

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	LOFAR Transients Pipeline 2.1.0 documentation

LOFAR Transients Pipeline

Version 2.1.0

	Introduction
	High-level overview

	Documentation layout

	Getting Started
	Installation

	Configuring the casacore ephemeris

	Concepts

	Tutorial Overview

	User’s Reference Guide
	trap-manage.py

	Pipeline Configuration

	Pipeline Design

	Developer’s Reference Guide
	Development Procedure

	The Pipeline Database

	TKP Package API Reference

	Standalone Tools
	PySE

	Image Metadata Injection

	Bibliography

	Colophon

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

Introduction

The LOFAR Transients Pipeline (“TraP”) provides a means of searching a stream
of N-dimensional (two spatial, frequency, polarization) image “cubes” for
transient astronomical sources. The pipeline is developed specifically to
address data produced by the LOFAR Transients Key Science Project [http://www.transientskp.org], but may also be applicable to other
instruments or use cases.

The TraP codebase provides the pipeline definition itself, as well as a number
of supporting routines for source finding, measurement, characterization, and
so on. Some of these routines are also available as stand-alone tools.

High-level overview

The TraP consists of a tightly-coupled combination of a “pipeline definition”
– effectively a Python script that marshals the flow of data through the
system – with a library of analysis routines written in Python and a
database, which not only contains results but also performs a key role in data
processing.

Broadly speaking, as images are ingested by the TraP, a Python-based
source-finding routine scans them, identifying and measuring all point-like
sources. Those sources are ingested by the database, which associates them with previous measurements (both from earlier images
processed by the TraP and from other catalogues) to form a lightcurve.
Measurements are then performed at the locations of sources which were
expected to be seen in this image but which were not detected. A series of
statistical analyses are performed on the lightcurves constructed in this way,
enabling the quick and easy identification of potential transients. This
process results in two key data products: an archival database containing
the lightcurves of all point-sources included in the dataset being processed,
and community alerts of all transients which have been identified.

Exploiting the results of the TraP involves understanding and analysing the
resulting lightcurve database. The TraP itself provides no tools directly
aimed at this. Instead, the Transients Key Science Project has developed the
Banana [https://github.com/transientskp/banana] web interface to the
database, which is maintained separately from the TraP. The database may also
be interrogated by end-user developed tools using SQL [https://en.wikipedia.org/wiki/SQL].

Documentation layout

The documentation is split into four broad sections:

	Getting Started

	Provides a guide to installing the TraP and its supporting libraries on
common platforms and some basic information to help get up and running
quickly.

	User’s Reference

	Here we provide a complete description of all the functionality available in
the TraP and describe the various configuration and setup options available
to the end user.

	Developer’s Reference

	A guide to the structure of the codebase, the development methodologies, and
the functionality available in the supporting libraries. This is of interest
both to developers within the project and to those who want to build upon
TraP functionality for their own purposes.

	Stand-alone Tools

	Some functionality developed for the TraP is also available in these simple,
end-user focused tools.

This documentation focuses on the technical aspects of using the TraP: all the
pipeline components are described, together with their user-configurable
parameters and the systems which have been developed for connecting them
together to form a pipeline. However, it does not provide detailed rationale
for all of the scientific choices made in the pipeline design. It is the
position of the author that achieving high quality results requires
understanding both the technical and the scientific choices made. For help
with the latter, the reader is referred to Swinbank et al.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

Getting Started

	Installation
	Back-end Database

	Pixel Store

	Core Dependencies

	Installation

	Distributed processing via Celery

	Configuring the casacore ephemeris

	Concepts
	Pipeline Database

	MongoDB

	Tutorial Overview
	Install the software

	trap-manage.py

	Create a pipeline project directory

	Create a database

	Initialize a database

	Resetting a TraP database

	Create and configure a job

	Run the pipeline

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Getting Started

Installation

To install the TraP you must:

	Install and configure a suitable back-end database;

	Optionally, install and configure MongoDB [http://www.mongodb.org/]
as a pixel store;

	Install the core pipeline dependencies (casacore etc);

	Install the TraP itself, via the ‘tkp’ Python package.

Some details on each of these steps is provided below.

Note, though, that the overall procedure is complex, and can be difficult if
you’ve not had prior experience with e.g. database configuration.
It is possible instead to use
Vagrant [http://www.vagrantup.com/] to quickly and easily set up a virtual
machine which provides a fully configured and working ready-to-go pipeline and
supporting tools. This is a quick and easy way to get up and running for
testing purposes or when simplicity is preferable to ultimately high
performance. Refer to the Vagrant TraP [https://github.com/transientskp/vagrant_trap] repository for details and
instructions.

Back-end Database

The TraP supports two database management systems for use as the
pipeline database: MonetDB [http://www.monetdb.org/] and PostgreSQL [http://www.postgresql.org/].
Both are available for common operating systems and package managers: pick one
and install it.

A complete description of configuring your database management system is
beyond the scope of this guide: refer to its documentation for details. Some
brief notes on things to look out for follow.

PostgreSQL

Ensure that the access rights to your server are set appropriately, for
example to trust connections from whichever machine(s) will be used to run the
TraP. This is done by editing pg_hba.conf, and can be verified by
connecting with the command line tool psql.

MonetDB

To be able to administer MonetDB databases, you need to be a member of the
monetdb group.

To issue remote management commands, such as database creation, you need to
both enable this functionality and set a passphrase:

monetdbd set control=yes ${dbfarm}
monetdbd set passphrase=${myphassphrase} ${dbfarm}

Pixel Store

Optionally, the pixel contents of all images processed (but not the metadata)
can be saved to a MongoDB [http://www.mongodb.org/] database for future
reference (e.g. via the Banana [https://github.com/transientskp/banana] web
interface). This naturally requires that a MongoDB daemon is installed and
configured to accept requests from TraP clients.

Core Dependencies

TraP mostly depends on standard packages which you should be able to find
in your system’s package manager (e.g. apt, yum, etc).
To install the TraP, you will need the following:

	C++ and Fortran compilers (tested with GCC [http://gcc.gnu.org/])

	GNU Make [https://www.gnu.org/software/make/]

	Python [https://www.python.org/] (2.7.x series, including header files)

	Boost Python [http://www.boost.org/doc/libs/release/libs/python/doc/]

	WCSLIB [http://www.atnf.csiro.au/people/mcalabre/WCS/]

TraP also has a number of Python-package dependencies. The install process
will attempt to download and install these as necessary, but you may
wish to pre-install system packages for some of the following,
in order to save time recompiling them from source:

	NumPy [http://www.numpy.org/] (at least version 1.3.0)

	SciPy [http://www.scipy.org/] (at least version 0.7.0)

	python-dateutil [http://labix.org/python-dateutil] (at least version 1.4.1)

	python-psycopg2 [http://initd.org/psycopg/] (for PostgreSQL)

	python-monetdb [https://pypi.python.org/pypi/python-monetdb] (for MonetDB)

To work with the pixel store you will also need:

	PyMongo [http://api.mongodb.org/python/current/]

Finally, TraP also requires the ‘casacore’ library, which is not yet widely
available as a system package:

	casacore [https://github.com/casacore/casacore/] (including measures data)

Casacore can be compiled from source, or users of
Ubuntu-based distributions might find the
Radio Astronomy Launchpad page [https://launchpad.net/~radio-astro/+archive/ubuntu/main]
useful.

Warning

See also the note on casacore measures data,
which can often cause confusing errors if out-of-date or incorrectly
configured.

Installation

Once all dependencies have been satisfied, installation should be
straightforward. You can either install from source:

$ git clone --branch release2.1 https://github.com/transientskp/tkp.git
$ cd tkp
$ python setup.py install

Or you can install directly from the Python Package Index
(PyPI [https://pypi.python.org/pypi/tkp]), e.g. using
pip [https://pip.pypa.io]):

$ pip install tkp==2.1

Note that if you want to make use of the pixel store
functionality, then:

$ pip install tkp[pixelstore]==2.1

will install the required libaries, similarly:

$ pip install tkp[monetdb]==2.1

will ensure installation of the python-monetdb interface package.

Following installation, including setting up and configuring the database,
follow the test procedure to ensure that everything is
working and ready for use.

Distributed processing via Celery

If you wish to run a TraP job across multiple machines, you may optionally
also install a Celery broker (at least version 3.0);
see the Celery website [http://www.celeryproject.org/] for further details
of the Celery package.

Multiple different options for Celery brokers are available;
refer to the Celery documentation for details.
We have had success with RabbitMQ [http://www.rabbitmq.com/].

This functionality is currently not well supported
and should be considered experimental.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Getting Started

Configuring the casacore ephemeris

Note that as part of the installation you (or your system administrator) will
have installed the casacore “measures data”. This includes information
essential to carrying out astronomical calculations, such as a list of leap
seconds and a set of solar system ephemerides (which specify the positions of
the planets at any given time). Data for the ephemerides are ultimately
supplied by NASA JPL [http://iau-comm4.jpl.nasa.gov/README.html]; they have been converted into a format that casacore
can use. Any given ephemeris is only valid for a limited time (usually on the
order of centuries), determined by the accuracy with which it was calculated.

By default, casacore will use the DE 200 ephemeris. Although the version
of DE 200 supplied by JPL is valid until 2169, some versions converted
for use with casacore are not, and may not provide coverage of the dates of
your observation. A simple Python script can be used to check:

$ cat check_ephemeris.py
import sys
from casacore.measures import measures
dm = measures()
dm.do_frame(dm.epoch('UTC', sys.argv[1]))
dm.separation(dm.direction('SUN'), dm.direction('SUN'))
$ python check_ephemeris.py 1990/01/01
$ python check_ephemeris.py 2015/01/01
WARN MeasTable::Planetary(MeasTable::Types, Double)
 (file /build/buildd/casacore-1.7.0/measures/Measures/MeasTable.cc, line 4056)
 Cannot find the planetary data for MeasJPL object number 3 at UT day 57023 in
 table DE200

If no warning is printed, there is no problem; otherwise, you should use a
different ephemeris. For example, the DE 405 ephemeris should be valid
until at least early 2015:

$ cat > ~/.casarc
measures.jpl.ephemeris: DE405
$ python check_ephemeris.py 2015/01/01
No warnings

An alternative issue sometimes encountered is that of measures data which is
simply outdated.
Should you see an error along the lines of

SEVERE gaincal::MeasTable::dUTC(Double) (file measures/Measures/MeasTable.cc, line 6307 Leap second table TAI_UTC seems out-of-date.
SEVERE gaincal::MeasTable::dUTC(Double) (file measures/Measures/MeasTable.cc, line 6307)+ Until table is updated (see aips++ manager) times and coordinates
SEVERE gaincal::MeasTable::dUTC(Double) (file measures/Measures/MeasTable.cc, line 6307)+ derived from UTC could be wrong by 1s or more

Then you might try to update your measures data via Rsync, as described in
this NRAO helpdesk article [http://casaguides.nrao.edu/index.php?title=Fixing_out_of_date_TAI_UTC_tables_%28missing_information_on_leap_seconds%29]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Getting Started

Concepts

Here we describe some basic concepts that are important to understanding TraP
operation.

	Pipeline Database

	MongoDB

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Getting Started

 	Concepts

Pipeline Database

The TraP consists of a very tightly-coupled set of logic implemented partial
in Python code and partially in a relational database. The database contains
measurements made of sources being processed by the TraP, as well as
information about the images being processed, the regions of the sky being
surveyed, and so on. The database is fundamental to the operation of the TraP:
except for a few standalone tools, use of a database is
absolutely required.

The tight coupling between the Python code and the database implies that the
version of the database schema in use must match the
version in the of the code. Note that the schema version referred to in this
document is 34.

In general, a single database management system (RDBMS) can support more than
one independent database. It is suggested that each coherent “project”
processed through the TraP be given an independent database. For example, a
project in this sense might include all the data from a particular survey, or
all the data processed by a particular user. The resulting data can then be
archived as a coherent unit, while other projects continue to use the same
RDBMS undisturbed.

Within the context of the TraP, we support two different RDBMSs: MonetDB [http://www.monetdb.org/] and PostgreSQL [http://www.postgresql.org/].
All TraP functionality is available whichever database you choose: it is
suggested you experiment to determine which provides the best combination of
usability and performance for your particular usage.

See the relevant section of the documentation for
much more information about configuring and operating the database as well as
understanding its contents.

Finally, it is important to note that the pipeline database does not contain
any image pixel data: it stored metadata and derived products only. It is
possible to store pixel data as part of a pipeline run, but that is a separate
subsystem: see MongoDB.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Getting Started

 	Concepts

MongoDB

In general, image pixel data is not regarded as a standard TraP data
product: stated policy is that archiving the large amount of pixel
data generated by the sort of surveys that TraP is designed to process is
simply impractical.

However, particularly when processing smaller volumes of data, or for pipeline
testing and commissioning, it is convenient to be able to store a copy of the
pixels that have been processed. The TraP therefore supports storing image
data to a MongoDB [http://www.mongodb.org/] database. MongoDB is a
“document-oriented database”, which provides a convenient, low-overhead way to
store and retrieve large volumes of image data.

It is worth noting that the data stored to MongoDB is not a bit-for-bit copy
of the input images. We store only the pixel data together with world
coordinate system information embedded in a FITS [http://fits.gsfc.nasa.gov/] container; other metadata is stripped.

The use of MongoDB within the TraP is completely optional: it is perfectly
possibly to run a complete survey without installing it. However, if storing
image data is required, you will need to install MongoDB [http://docs.mongodb.org/manual/installation/] along with the TraP and
configure the persistence step appropriately.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Getting Started

Tutorial Overview

This page walks you through setting up a complete, stand-alone TraP
environment running on your own system.

Install the software

First of all, the software should be installed on your system. See the
installation manual.

Note

Issues with the casacore [https://code.google.com/p/casacore/]
installation can occasionally require a per-user fix (placing a small
config file in your home directory). If you see errors along the lines of:

WARN MeasTable::Planetary(MeasTable::Types, Double)
(file /build/buildd/casacore-1.7.0/measures/Measures/MeasTable.cc, line 4056)
Cannot find the planetary data for MeasJPL object number 3 at UT day 57023 in
table DE200

or:

SEVERE gaincal::MeasTable::dUTC(Double) ...
Leap second table TAI_UTC seems out-of-date.

Then consult your sysadmin or see this note.

trap-manage.py

The main tool for configuring and running TraP is trap-manage.py, which
should be available to you as a command-line utility after installing the TraP.
You may need to consult your sysadmin for details of how to access
your local TraP installation. You can remind yourself of the options available
to you by running:

$ trap-manage.py -h

Or you can consult the documentation for details.

Create a pipeline project directory

To get started using TraP, you should first create a project directory:
this will contain your pipeline settings and job directories.
To create a project folder in your current working directory,
type:

$ trap-manage.py initproject <projectname>

(substituting <projectname> for your chosen directory name).

Create a database

The pipeline requires a database for storing data, which needs to be created
manually. The database then needs to be initialised with the TRAP database
schema before it can be used.

Depending on your site configuration, creating a database may require sysadmin
rights. Refer to the relevant documentation for your installed database engine
on creating a database:

	MonetDB online documentation [https://www.monetdb.org/Documentation/monetdbd]

	PostgreSQL online documentation [http://www.postgresql.org/docs/9.1/static/app-createdb.html]

Initialize a database

To initialise a database the TraP manage initdb subcommand can be used.
Set the details of the database you have created in the database
section of your pipeline config file.
These include the host and port number of
the system running the database management system, the name of the database,
and the username and password.
Then, from the project directory, type:

$ trap-manage.py initdb

Resetting a TraP database

You may wish to reset a previously used TraP database to an empty state.

Warning

As you might expect, this may incur irreversible data loss. Be careful!

	PostgreSQL

	For PostgreSQL there is the optional -d flag for the initdb subcommand,
which removes all content before populating the database.

	MonetDB

	In the case of MonetDB you need to do this manually. You can do this with the
following commands, where ${dbname} should be replaced with the database
name:

monetdb stop ${dbname}
monetdb destroy -f ${dbname}
monetdb create ${dbname}
monetdb start ${dbname}
monetdb release ${dbname}

For security reasons you should change the default password:

mclient -d ${dbname} -s"ALTER USER \"monetdb\" RENAME TO \"${username}\";
ALTER USER SET PASSWORD '${password}' USING OLD PASSWORD 'monetdb';"

Create and configure a job

Your pipeline project directory can contain multiple jobs, each represented by
a subdirectory. Job directories contain a list of files to process, and config
file that can be used to define various properties used during processing.
To initialise a job directory run:

$ trap-manage.py initjob <jobname>

This will create a job subdirectory within your pipeline directory. This
directory contains three files:

	images_to_process.py

	This is a Python script that is used to generate a list of paths to
images. You will need to adjust this to point to your data files.

	job_params.cfg

	The parameters configuration file for this job.

	inject.cfg

	Configuration for image metadata injection.

Run the pipeline

To start processing your data run (from your pipeline directory):

$ trap-manage.py run <jobname>

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

User’s Reference Guide

	trap-manage.py

	Pipeline Configuration
	Configuration System Overview

	pipeline.cfg - Project Configuration File

	job_params.cfg - Job Parameters Configuration

	celeryconfig.py - Task distribution via Celery

	Pipeline Design
	Pipeline topology and code re-use

	Image ordering and reproducibility

	Configuration and startup

	Pipeline stages

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

trap-manage.py

trap-manage.py is the command-line tool for initialising and running the
TraP pipeline. Different tasks are handled via the use of ‘subcommands’
as detailed below.

When the TraP is correctly installed on the system you can issue the
trap-manage.py command. Documentation of subcommands is also available
on the command line. You can use the --help flag (also per subcommand) to
explore all possible options.

A tool for managing TKP projects.

Use ‘initproject’ to create a project directory. Other Subcommands
should be run from within a project directory.

NB:
To overwrite the database settings in pipeline.cfg you can use these
environment variables to configure the connection:

	TKP_DBENGINE

	TKP_DBNAME

	TKP_DBUSER

	TKP_DBPASSWORD

	TKP_DBHOST

	TKP_DBPORT

(This is useful for setting up test databases, etc.)

usage: trap-manage.py [-h] {initproject,initjob,run,initdb,celery} ...

	Sub-commands:

	
	initproject

	
 Initialize a pipeline project directory, complete with config files which you
 can use to configure your pipeline.

usage: trap-manage.py initproject [-h] [-t TARGET] name

	Positional arguments:

	

	
name
	project folder name

	Options:

	

	
-t, --target
	location of new TKP project

	initjob

	
 Create a job folder, complete with job-specific config files
 which you will need to modify.

usage: trap-manage.py initjob [-h] name

	Positional arguments:

	

	
name
	Name of new job

	run

	Run a job by specifying the name of the job folder.

usage: trap-manage.py run [-h] [-m MONITOR_COORDS] [-l MONITOR_LIST] name

	Positional arguments:

	

	
name
	Name of job to run

	Options:

	

	
-m, --monitor-coords

		a list of RA,DEC coordinates to monitor in JSON format, example: [[5, 6], [7, 8]]

	
-l, --monitor-list

		Specify a file containing a list of RA,DEC

	initdb

	Initialize a database with the TKP schema.

usage: trap-manage.py initdb [-h] [-y] [-d]

	Options:

	

	
-y=False, --yes=False

		don’t ask for confirmation

	
-d=False, --destroy=False

		remove all tables before population(only works with Postgres backend)

	celery

	Shortcut for access to celery sub commands

usage: trap-manage.py celery [-h] ...

	Positional arguments:

	

	
rest
	A celery subcommand

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

Pipeline Configuration

The TraP has a multi-level configuration system which can be complex to get to
grips with. Here, we cover the logic behind the system and describe how users
can best customize to meet their needs.

	Configuration System Overview
	Preamble

	Creating a Project Directory

	Creating a Job

	Running a Job

	Configuration file syntax

	pipeline.cfg - Project Configuration File
	DEFAULT section

	logging section

	database Section

	image_cache Section

	parallelise Section

	job_params.cfg - Job Parameters Configuration
	persistence Section

	quality_lofar Section

	source_extraction Section

	association Section

	transient_search Section

	celeryconfig.py - Task distribution via Celery
	Run Celery workers

	Celery Configuration File

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Configuration

Configuration System Overview

Preamble

Users organize their TraP runs into projects, which define the basic
operational TraP parameters, for example which
database to use.
All the configuration and log files
relating to a particular project are stored in the same directory hierarchy.

Within a project, the user is able to configure multiple pipeline runs, which are
referred to as jobs. For example, the user could use a single project to
repeatedly re-analyse a particular set of images with a range of different
sourcefinder settings, with each analysis constituting a particular job.
Alternatively, a project might be dedicated to a multi-epoch survey, with each
job corresponding to a different epoch. The fundamental point is that the
basic control structures such as the database and task distribution system
remain the same, but, within those limits, the user is free to organize their
work as they please.

Creating a Project Directory

Use trap-manage.py to create a project directory:

$ trap-manage.py initproject <directory-name>

The created directory will contain the following configuration files:

	pipeline.cfg

	The overall pipeline configuration file.
This configures the database which will be used for this project,
as well as specifying where and how to store log files.
See here for a full description.

	celeryconfig.py

	Configuration of the Celery task distribution system.
See here for a full description.

Creating a Job

From within a project directory, use the trap-manage.py script to create a job:

$ cd ./<projectname>
$ trap-manage.py initjob <jobname>

This creates a job directory as a subdirectory of your project directory,
named according to the job name. Within that directory, there are three
files:

	images_to_process.py

	This defines the list of images which will be processed by this job. It is
a Python file, which, when loaded, provide at module scope iterable named
images which contains the full path to each image to be processed.

In other words, the file could be as simple as:

images = ["/path/to/image1", "/path/to/image2", ...]

Or could contain an elaborate set of globbing and pathname expansion as
required.

The end user will need to customize to properly specify their
requirements.

	inject.cfg

	Configuration for the metadata injection tool.

	job_params.cfg

	Configuration for each stage of the pipeline run represented by this job.
This contains all the end-user tunable parameters which are relevant to
TraP operation. See here for details.

Running a Job

Once fully configured, you will want to run a TraP job to process your data.
From within a project directory, you can start a job using:

$ trap-manage.py run <jobname>

Configuration file syntax

Several of the TraP’s configuration files – pipeline.cfg, inject.cfg, job_params.cfg – use the Python ConfigParser [http://docs.python.org/library/configparser.html#module-ConfigParser] file format. This is
defined by the Python standard library, and you should refer to its
documentation for a comprehensive reference. However, it is worth noting a few
salient points that may be of relevance to the TraP user.

These files are divided into named sections: the name comes at the top of the
section, surrounded by square brackets ([and]). Within a section,
a simple name = value syntax is used. ; indicates a comment (# may
also be used for commenting, but only at the start of a line).

Variable substiution is performed using the notation %(name)s: this will
be expanded into the value of the variable name when the file is read.
Variables used in expansion are taken either from the same section of the
file, or from the special DEFAULT section. For example:

[DEFAULT]
a = 1

[section_name]
b = 2
c = %(a)s
d = %(b)s

Would set the values of a and c to 1, and b and d to
2. In some cases, the TraP provides additional variables which may be
used in expansions in a particular file: these are noted in the documentation
for that file.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Configuration

pipeline.cfg - Project Configuration File

The project configuration file provides a common configuration to all pipeline
runs which are part of a particular project. Through
this file, it is possible to configure the database used for pipeline runs,
the location in which jobs are stored, and the amount and storage location for
logging.

The default pipeline.cfg file is as follows:

[DEFAULT]
runtime_directory = %(cwd)s
job_directory = %(runtime_directory)s/%(job_name)s

[logging]
#log_dir contains output log, plus a copy of the config files used.
log_dir = %(job_directory)s/logs/%(start_time)s
debug = False

[database]
engine = ;(monetdb or postgresql)
database = "" ; e.g. '{% user_name %}'
user = "" ; e.g. '{% user_name %}', or 'postgres'
password = "" ; e.g. '{% user_name %}'
host = "localhost"
port =
passphrase =
dump_backup_copy = False

[image_cache]
copy_images = True
mongo_host = "localhost"
mongo_port = 27017
mongo_db = "tkp"

[parallelise]
method = "multiproc" ; or celery, or serial
cores = 0 ; the number of cores to use. Set to 0 for autodetect

The file follows the standard ConfigParser syntax.
Three special variables which may be used in expansions are provided provided
by the TraP: cwd, the current working directory, start_time, the time
at which the current pipeline job is started and job_name, the name of the
job currently being executed.

DEFAULT section

The DEFAULT section provides a location for defining parameters which may
be referred to be other sections. The following parameters may be defined:

	runtime_directory

	This is the root directory for the project. The default value, %(cwd)s,
means that the pipeline.cfg refers to the project in the directory in which
it is stored: this is almost always correct.

	job_directory

	This is the directory under which new jobs will be created. The default is
to create a directory named after the job as a subdirectory of the project
directory. This is almost always correct.

logging section

	log_dir

	The full path to a directory into which the pipeline will write logging
information as it progresses, and also make a record of the parameters used
for a job. The log file provides a record of pipeline
activity, and, in particular, any errors or problems encountered, while the
parameter files record the configuration that produced these results.
This folder is therefore important for reproducibility and debugging
purposes.

	debug

	A boolean (True or False) value. If True, extra information will be written
to the log file, which might be helpful in diagnosing hard-to-find
problems.

database Section

Note

The database config settings can be over-ridden using environment
variables, e.g. for configuring a unit-testing environment.
See tkp.config.get_database_config() for details.

	engine

	The database engine to use. Two engines are supported: postgresql and
monetdb. See the introductory material on databases for details.

	host, port

	The host and port on the network at which the database server is listening.

	database, user, password

	The name of the database to use, and the username and password required to
connect to it.

	passphrase

	A passphrase which provides administrative access to the database server.
Only applicable to the monetdb engine. This is not required for normal
operation, but enables the user to (for example) create and destroy
databases.

	dump_backup_copy

	A boolean value. If True, a copy of the configured database will be
dumped to disk at the beginning of each pipeline run. This is not
recommended in regular use, but can be useful if encountering
intermittent database errors, both for recovering a working database,
and diagnosing how errors occur.
The dump is made to the job directory in a file named according to
the pattern <database host>_<database name>_<current time>.dump.

image_cache Section

This section configures the
image caching or ‘pixel store’ functionality.

See also: the ‘optional dependencies’ section of your relevant
installation guide.

	copy_images

	Boolean. If True, image pixel data will be stored to a MongoDB database.

	mongo_host, mongo_port

	String, integer. Network hostname and port to use to connect to MongoDB.
Only used if copy_images is True.

	mongo_db

	String. Name of MongoDB database in which to store image pixel data. Only
used if copy_images is True.

parallelise Section

	method

	Determines whether the TraP is run in single-process, multi-process, or
distributed mode.
"multiproc" should be suitable for most users.

	cores

	Determines the number of cores to use in multi-process mode. 0 will
attempt to autodetect (and use all available cores).

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Configuration

job_params.cfg - Job Parameters Configuration

The job parameters file provides the detailed, scientifically-motivated
settings for each pipeline step. Providing the appropriate configuration here
is essential for achieving scientifically valid results.

The default job_params.cfg file is as follows:

[persistence]
description = "TRAP dataset"
dataset_id = -1
#Sigma value used for iterative clipping in RMS estimation:
rms_est_sigma = 4
#Determines size of image subsection used for RMS estimation:
rms_est_fraction = 8

[quality_lofar]
low_bound = 1 ; multiplied with noise to define lower threshold
high_bound = 80 ; multiplied with noise to define upper threshold
oversampled_x = 30 ; threshold for oversampled check
elliptical_x = 2.0 ; threshold for elliptical check
min_separation = 10 ; minimum distance to a bright source (in degrees)

[source_extraction]
extraction threshold (S/N)
detection_threshold = 8
analysis_threshold = 3
back_size_x = 50
back_size_y = 50
margin = 10
deblend_nthresh = 0 ; Number of subthresholds for deblending; 0 disables
extraction_radius_pix = 250
force_beam = False
box_in_beampix = 10
ew/ns_sys_err: Systematic errors on ra & decl (units in arcsec)
See Dario Carbone's presentation at TKP Meeting 2012/12/04
ew_sys_err = 10
ns_sys_err = 10

[association]
deruiter_radius = 5.68
beamwidths_limit = 1.0

[transient_search]
new_source_sigma_margin = 3

The file follows the standard ConfigParser syntax.

The parameters in this file are defined as follows:

persistence Section

(See also the Persistence stage.)

	dataset_id

	Integer. Specifies the unique ID of a dataset to which the current pipeline
run should be appended. If -1, a new dataset is created. If you specify
a specific data set ID the configuration of your job is retrieved from the
database. This will override your job configuration.

	description

	String. The name under which the database will be stored in the database.
This value is only used if a new dataset is constructed (see
dataset_id, below).

	rms_est_sigma

	Float. Sigma value used for iterative clipping.

	rms_est_fraction

	Integer. Determines the size of the subsection used for RMS measurement:
the central 1/f of the image will be used (where f=rms_est_fraction).

quality_lofar Section

These are the quality-checking parameters applied if the ingested data is from LOFAR.
See also Quality check stage.

	low_bound

	Float. Reject the image if the measured RMS is less than low_bound
times the theoretical noise.

	high_bound

	Float. Reject the image if the measured RMS is greater than high_bound
times the theoretical noise.

	oversampled_x

	The maximum length of a beam axis.

	elliptical_x

	The maximum ratio of major to minor axis length.

	min_separation

	The minimum allowed distance from the image centre to a bright radio
source in degrees.

source_extraction Section

Parameters used in source extraction.
See also “Blind” source extraction stage and Forced source-fitting stage.

	detection_threshold

	Float. The detection threshold as a multiple of the RMS noise.

	analysis_threshold

	Float. The analysis threshold as a multiple of the RMS noise.

	back_size_x, back_size_y

	Integers. The size of the background grid parallel to the X and Y axes of
the pixel grid.

	margin

	Integer. Pixel data within margin pixels of the edge of the image will
be excluded from the analysis.

	extraction_radius_pix

	Integer. Pixel data more than extraction_radius_pix pixels from the
centre of the image will be excluded from the analysis.

	deblend_nthresh

	Integer. The number of subthresholds to use for deblending. Set to 0 to
disable deblending.

	force_beam

	Boolean. If True, all detected sources are assumed to have the size and
shape of the restoring beam (ie, to be unresolved point sources), and these
parameters are held constant during fitting. If False, all parameters
are allowed to vary freely.

	box_in_beampix

	The size of the masking aperture which determines which pixels are used
for forced fitting, as a multiple of the beam major axis length.
See tkp.sourcefinder.image.ImageData.fit_to_point() for details.

	ew_sys_err, ns_sys_err

	Floats. Systematic errors in units of arcseconds which augment the
sourcefinder-measured errors on source positions when performing source
association. These variables refer to an absolute angular error along an
east-west and north-south axis respectively. (NB Although these values
are stored during the source-extraction process, they affect the
source-association process.)

association Section

Parameters used in source-association. See Source association stage for details.
NB the ew_sys_err, ns_sys_err parameters detailed above also affect
source-association.

	deruiter_radius

	Float. Maximum DeRuiter radius for two sources to be considered candidates
for association.

	beamwidths_limit

	Float. Maximum separation for two sources to be considered candidates for
association, as a multiple of the restoring-beam semimajor-axis length.
Default is 1.0, which was the fixed default prior to TraP release 2.1.
It may be necessary to use a larger number if your data has large
systematic position errors, i.e. if the sources ‘jitter’ between images,
but note that using a large value can cause slowdown of database operations.

transient_search Section

Parameters used in transient-detection. See also the
Variability and new-source detection stage.

	new_source_sigma_margin

	Float. A newly detected source is considered transient if it is
significantly above the best (lowest) previous detection limit for that
point on-sky. ‘Significantly above’ is defined by a ‘margin of error,’
intended to screen out steady sources that just happen to be fluctuating
around the detection threshold due to measurement noise.
This value sets that margin as a multiple of the RMS of the previous-best
image.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Configuration

celeryconfig.py - Task distribution via Celery

Warning

TRAP runs in parallel on a single multi-core machine by default now,
using the standard multiprocessing functionality.
As such, you should only try to use celery if you want to
distribute a single job over multiple machines.

Celery [http://celeryproject.org/] provides a mechanism for distributing
tasks over a cluster of compute machines by means of an “asynchronous task
queue”. This means that users submit jobs to a centralised queueing system (a
“broker”), and then one or more worker processes collect and process each job
from the queue sequentially, returning the results to the original submitter.

Celery is a flexible but complex system, and the details of its configuration
fall outside the scope of this document. The user is, instead, referred to the
Celery documentation [http://celeryproject.org/docs-and-support/]. Here,
we provide only some brief explanation.

If you would like to take advantage of the task distribution system, you will
need to set up a broker and one or more workers which will process tasks from
it. There are a number of different brokers available [http://docs.celeryproject.org/en/latest/getting-started/brokers/], each
with their own pros and cons: RabbitMQ [http://www.rabbitmq.com/] is a fine
default choice.

Workers can be started by using the celery worker option to the
trap-manage.py script. Indeed, trap-manage.py provides a
convenient way of interfacing with a variety of Celery subcommands: try
trap-manage.py celery -h for information.

When you start a worker, you will need to configure it to connect to an
appropriate broker. If you are using the trap-manage.py script, you can
configure the worker through the file celeryconfig.py
in your project folder: set the BROKER_URL
variable appropriately. Note that if you are running the broker and a worker
on the same host with a standard configuration, the default value should be
fine.

Note that a single broker and set of workers can be used by multiple different
pipeline users. If running on a shared system, it is likely sensible to
regard the broker and workers as a “system service” that all users can access,
rather than having each user try to run their own Celery system.

Note also that a worker loads all the necessary code to perform its
tasks into memory when it is initalized. If the code on disk changes after
this point (for example, if a bug is fixed in the TraP installation), the
worker will continuing executing the old version of the code until it is
stopped and restarted. If, for example, you are using a “daily build” of the
TraP code, you will need to restart your workers after each build to ensure
they stay up-to-date.

Finally, always bear in mind that it is possible to disable the whole task
distribution system and run the pipeline in a single process. This is simpler
to set up, and likely simpler to debug in the event of problems. But keep in
mind that a running broker is still required. To enable this mode, simple edit
your celeryconfig.py file and ensure it contains the (uncommented) line:

CELERY_ALWAYS_EAGER = CELERY_EAGER_PROPAGATES_EXCEPTIONS = True

Run Celery workers

If you want to parallelize TraP operations using celery, you need to run a
separate Celery worker. This worker will receive jobs from a broker, so it is
assumed you installed and started a broker in the installation step. Start a
Celery worker by running:

% trap-manage.py celery worker

If you want to increase the log level add --loglevel=info or maybe even
debug to the command. If you dont want to use a Celery worker (run the
pipeline is serial mode) uncomment this line in the celeryconfig.py file in
your pipline directory:

#CELERY_ALWAYS_EAGER = CELERY_EAGER_PROPAGATES_EXCEPTIONS = True

Note that a running broker is still required.

Celery Configuration File

The management script may be used to start a Celery worker. The worker is configured using the file
celeryconfig.py in the project directory. The
default contents of this file are:

TraP Celery Configuration

This file uses the standard Celery configuration system.
Please refer to the URL below for full documentation:
http://docs.celeryproject.org/en/latest/configuration.html

Uncomment the below for local use; that is, bypassing the task distribution
system and running all tasks in serial in a single process. No broker or
workers are required.
#CELERY_ALWAYS_EAGER = CELERY_EAGER_PROPAGATES_EXCEPTIONS = True

Prevents issues with using a separate threading.Thread in addition to Celery.
CELERYD_FORCE_EXECV = True

Otherwise, configure the broker to which workers should connect and to which
they will return results. This must be started independently of the
pipeline.
BROKER_URL = CELERY_RESULT_BACKEND = 'amqp://guest@localhost//'

This is used when you run a worker.
CELERY_IMPORTS = ("tkp.distribute.celery.tasks",)

Note that this file is Python code, and will be parsed as such. In fact, it is
a fully-fledged Celery configuration file, and the reader is referred to the
main Celery documentation [http://docs.celeryproject.org/en/latest/configuration.html] for a complete
reference. Here, we highlight just the important parameters defined in the
defualt configuration.

Note the line:

#CELERY_ALWAYS_EAGER = CELERY_EAGER_PROPAGATES_EXCEPTIONS = True

By uncommenting this line (removing the initial #), the pipeline is forced
to run in serial mode. That is, tasks are executed sequentially by a single
Python process. No broker and no workers are required. This will likely have a
significant impact on performance, but makes the system simpler and easier to
debug in the event of problems.

The line:

BROKER_URL = CELERY_RESULT_BACKEND = 'amqp://guest@localhost//'

specifies the URL of the Celery broker, which is also the location to which
workers will return their results. Various different types of broker are
available (see our introduction to Celery for
suggestions), and they must be configured and started independently of the
pipeline: the appropriate URL to use will therefore depend on the
configuration chosen for your local system.

The other parameters in the file – CELERY_IMPORTS and
CELERYD_HIJACK_ROOT_LOGGER – should be left set to their default values.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

Pipeline Design

This section presents an overview of the fundamental algorithms used by, and
data flow through, the TraP. It is designed such that everyday users have a
full understanding of how their data is being processed.
Note that the top-level logic is defined in tkp.main, further
implementation details for specific sub-sections may be found in the
Developer’s Reference Guide.

As images flow through the TraP, they are processed by a series of distinct
pipeline components, or “stages”. Each stage consists of Python logic,
often interfacing with the pipeline database.

A complete description of the logical design of the TraP is beyond the scope
of this document. Instead, the reader is referred to an upcoming publication
by Swinbank et al. Here, we sketch only an outline of
the various pipeline stages.

Pipeline topology and code re-use

An early design goal of the TraP was that the various stages should be easily
re-usable in different pipeline topologies. That is, rather than simply
relying on “the” TraP, users should be able to mix-and-match pipeline
components to pursue their own individual science goals. This mode of
operation is not well supported by the current TraP, but some effort is made
to ensure that stages can operate as independent entities

Image ordering and reproducibility

The material below describes each of the stages an image goes through as it is
processed through the pipeline. It is important to realise, though, that the
order in which images are processed is important due to the way in which
lightcurves are generated within the database: see the material on
Source association stage for details. Reproducibility of pipeline results is
of paramount importance: the TraP guarantees that results will be reproducible
provided that images are always processed in order of time. That is, an
image from time \(t_n\) must always be processed before an image from time
\(t_{n+1}\). In order to satisfy this condition, the TraP will internally
re-order images provided to it in the images_to_process.py file so that they are in time order. If multiple TraP runs are to be
combined in a single dataset, the user must ensure that the runs are in an
appropriate sequence.

Configuration and startup

The pipeline configuration and job management system is described under
Pipeline Configuration.

Pipeline stages

	Persistence stage

	Quality check stage

	“Blind” source extraction stage

	Source association stage

	Forced source-fitting stage

	Variability and new-source detection stage

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Design

Persistence stage

(See also the relevant configuration parameters.)

A record of all images to be processed is made in the database. Within the
database, images are sorted into datasets, which group
related images together for processing: searches for transients are performed
between images in a single databset, for instance. All images being processed
are added to the same dataset.

Optionally, a copy of the image pixel data may be stored to a MongoDB instance at the same time. This is configured in
the image_cache section of the pipeline config.

Note that only images which meet the data accessor
requirements are stored in the database. Any other data provided to the
pipeline will be processed: an error will be logged, and that data will not be
included in further processing.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Design

Quality check stage

(See also the relevant configuration parameters.)

Images are checked to ensure they meet a minimum “quality” standard such that
useful scientific information can be extracted from them. If an image fails to
meet quality standards, it is rejected and not included in further processing.
However, it is still recorded in the database for book-keeping purposes.

The quality check code is structured such that different sets of tests can be
applied to images from different telescopes
(see source of the tkp.steps.quality.reject_check() function for
implementation details).
Currently, only a selection of
tests designed to process LOFAR images are available. Three separate tests are
performed:

Image RMS

The central subsection of the image is iteratively sigma-clipped
until it reaches a user-defined convergence. The RMS of the clipped value is
compared to the theoretically expected image noise based on the LOFAR
configuration in use. The image is rejected if the noise is signifcantly
greated than expected.

Beam shape

The restoring beam is represented as an ellipse, parameterized by lengths of
its major and minor axes and a position angle. These parameters are checked
for sanity. Four separate checks are applied:

	None of the beam parameters should be infinite.

	Both beam axes should be at least two pixels long (the beam is not
undersampled).

	Neither beam axis should be longer than a user-defined threshold (the beam
is not oversampled).

	The ratio of the major to the minor axis should be lower than a user defined
threshold (the beam is not excessively elliptical).

Nearby bright sources

There should be no bright radio sources within a user-defined radius of the
image centre. The sources checked for are:

	Cassiopeia A

	Cygnus A

	Tauraus A

	Hercules A

	Virgo A

	The Sun

	Jupiter

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Design

“Blind” source extraction stage

(See also the
relevant configuration parameters.)

A source finding and measurement step is run on the image. For more details
on the procedure employed, the reader is referred to Spreeuw (2010). Here, we present only a brief introduction.

The algorithm employed is:

	The image is divided into a square grid of user defined size.

	Within each cell, the data is sigma-clipped to remove the effect of
bright sources.

	The median pixel value within each clipped cell is calculated, and
interpolated across the image to form a background map.

	The RMS pixel value within each clipped cell is calculated, and interpolated
across the image to form a noise map.

	The background map is subtracted from the data.

	Pixels in the image data which are more than a “detection threshold” times
the value of the noise map at the pixel position are identified as sources.

	Pixels in the image data which are adjacent to source pixels and which more
than an “analysis threshold” times the value of the noise map at the pixel
position are appended to the source pixels.

	The source pixel groups are (optionally) “deblended”: multi-component
sources are split into their constituent parts by a multi-thresholding
technique. The method is based upon that described by Bertin & Arnouts
(1996); see Spreeuw (2010) for a
discussion of the differences.

	An estimate of the source parameters are made based on the source pixels.
The barycentre is taken as the position of the source, and the moments about
that centre are used to estimate axis lengths and position angles.

	A least squares fit of an elliptical Gaussian to the pixel values is
performed, starting with the estimated source parameters. If the fit
converges, the fitted values are returned as the source measurement; if not,
we return the earlier estimate together with an appropriate flag.

For each source, the following measurements are stored:

	Position (RA and declination, including uncertainties);

	An estimate of the absolute on sky angular error on the position (NB this is
not equivalent to the errors on RA and/or declination);

	The peak flux value;

	The integrated flux value;

	The lengths of the major and minor axes;

	The position angle, measured counterclockwise from the Y axis;

	The significance of the detection (that is, the ratio of the peak flux value
to the RMS map at that point).

After the blind extraction has been performed, the list of source measurements
is stored in the database.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Design

Source association stage

(See also the relevant configuration parameters.)

After all blind
source measurements have been inserted into the database, they are
“associated” with existing sources to form lightcurves. A word on the database
nomenclature may be helpful: we store source measurements (the result of a fit
to a particular collection of image pixels) in a table called
extractedsource, and multiple extracted
sources are collected together to form a lightcurve by means of the
runningcatalog table (see the database
schema documentation for details). This terminology “leaks”
into TraP interfaces, and one will often see references to (for example) a
“runningcatalog source”.

The extracted sources are therefore associated with runningcatalog sources.
The association procedure is complex, taking account of multitudinous different
ways in which sources may be related. The detailed documentation on
Source Association Logic covers all the possible association topologies and
describes the code pathways in detail; see also Scheers (2011).

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Design

Forced source-fitting stage

(See also the
relevant configuration parameters.)

When the source association stage is complete,
the pipeline proceeds to handle forced-fits. These may be required either for
measuring ‘null detections’ or sources added to the monitoringlist.

Null detection handling

A “null detection” is the term used to describe a source which was expected to
be measured in a particular image (because it has been observed in previous
images covering the same field of view) but was in fact not detected by the
blind extraction step.

After the blindly-extracted source measurements have been stored to the
database and have been associated with the known sources in the running
catalogue, the null detection stage starts.
We retrieve from the database a list of sources that serve as the null detections.
Sources on this list come from the runningcatalog and

	Do not have a counterpart in the extractedsources of the current
image after source association has run.

	Have been seen (in any band) at a timestamp earlier than that of the
current image.

We determine null detections only as those sources which have been
seen at earlier times which don’t appear in the current image.
Sources which have not been seen earlier, and which appear in
different bands at the current timestep, are not null detections,
but are considered as “new” sources.

For all sources identified as null detections, we measure fluxes by performing
a forced elliptical Gaussian fit to the expected source position on the image.
The procedure followed is similar to that used for blind extraction, but rather than allowing the pixel position of the
barycentre to vary freely, it is held to the known source position. No
deblending is performed.

The results of these “forced” source measurements are marked as such and
appended to the database.

After being added to the database, the forced fits are matched back to their
running catalog counterparts in order to append it as a datapoint in the light curve.
This matching is does not include the De Ruiter radius, since the source position came
from the running catalog.
It is sufficient to use the weighted positional error as a cone search, since the positions are identical.
Therefore the forced fit position is not included as
an extra datapoint in the position of the running catalog.
The fluxes, however, are included into the statistical properties and the values are updated.

It is worth emphasizing that the above procedure guarantees that
every known source will have either a blind detection or a forced-fit
measurement in every image from the moment it was detected for the
first time.

Null-detection depends upon the same
job configuration file parameters as the
“blind” source-extraction stage.

Monitoringlist

If monitoringlist positions have been
specified when running a job,
then these are always force-fitted whenever an image’s source-extraction region
contains the designated co-ordinates.
These forced fits are used to build up a special
runningcatalog entry which is excluded from association with
regular extractions.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	User’s Reference Guide

 	Pipeline Design

Variability and new-source detection stage

(See also the
relevant configuration parameters.)

Variability index calculation

After all images for a given timestep have been processed and the resulting
source measurements have been assigned to runningcatalog entries (effectively lightcurves), variability
indices are calculated for the most recent timestep, and stored as part of the
association recorded in the assocxtrsource table.

Note that a single runningcatalog source may
contain entries from multiple independent frequency bands. The
variability indices are calculated independently for each frequency band,
hence the \(\nu\) suffix in the calculations below denotes an index over
the different bands.

For a comprehensive discussion of the transient and variability detection
algorithms currently being employed, see Scheers (2011)
chapter 3. Here, we provide a brief outline.

We define two metrics for identifying variability in a lightcurve.
The flux coefficient of variation [http://en.wikipedia.org/wiki/Coefficient_of_variation], which we
denote \(V_\nu\), is defined as

\[V_{\nu} \equiv \frac{s_{\nu}}{\overline{I_{\nu}}}
 = \frac{1}{\overline{I_{\nu}}} \sqrt{\frac{N}{N-1}(\overline{I^{2}_\nu} - \overline{I_{\nu}}^2)}\]

where \(\overline{I_{\nu}}\) is the mean flux of all measurements in the
lightcurve at frequency \(\nu\), \(s_{\nu}\) is the standard deviation
of those flux measurements and \(N\) is the number of measurements.

The second metric is \(\eta_{\nu}\), which is defined based on reduced
\(\chi^2\) statistics as

\[\eta_{\nu} \equiv \chi^{2}_{N-1}
 = \frac{1}{N-1} \sum_{i=1}^{N} \frac{(I_{\nu,i} - \overline{I_{\nu}}^*)^2}{\sigma_{I_{\nu,i}}^2}\]

Where \(\overline{I_{\nu}}^*\) is the average of the flux measurements
weighed by their uncertainties. \(\eta_{\nu}\) is the \(\chi^{2}\)
probability distribution. The probability that the source is “flat” (i.e. has
no significant variability) is then the integral of the distribution from the
measured value of \(\eta_{\nu}\) to \(\infty\); the probability that
it isn’t flat is thus 1 minus this quantity.

See also the appendices on the database schema
for details of how these are iteratively updated.

‘New source’ detection

We also attempt to identify any newly extracted sources which we suspect
are intrinsically variable in nature (i.e. they are getting brighter, as
opposed to our observations getting deeper or even simply looking at a
previously unobserved patch of sky). The algorithm for evaluating new
sources is encoded by
tkp.db.associations._determine_newsource_previous_limits().
Sources we deem to be intrinsically ‘new’ are then recorded in the
newsource table.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

Developer’s Reference Guide

The developer’s reference guide presents the TraP from a code-oriented
perspective: it aims to enable developers to quickly get up-to-speed with the
structure of the project so they are able to start contributing. It also
describes the development process followed and the requirements regarding code
reviews, testing and documentation.

It is assumed that the reader is already familiar with the User’s Reference Guide.

	Development Procedure
	Accessing the Code

	Planning

	Issue Tracker

	Coding Standards

	Testing & Continuous Integration

	Documentation

	Code Review

	Release procedure

	The Pipeline Database
	Schema reference

	Source Association Logic

	“How-To” notes on common tasks

	TKP Package API Reference
	Subpackages

	Top-level modules

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

Development Procedure

Here we describe the development process used when working on the TraP. All
developers are encouraged to familiarize themselves with this material before
making any changes to the code.

	Accessing the Code

	Planning

	Issue Tracker

	Coding Standards

	Testing & Continuous Integration
	Requirements

	Test data

	Database

	Running the tests

	Continuous integration

	Documentation
	Requirements

	Technical details

	Code Review
	Submitting code for review

	Reviewing code

	Requirements for Pull Requests

	Release procedure
	Code and repository management

Information about the systems available to users and developers working on
LOFAR data using the TraP are available on the LOFAR wiki [http://www.lofar.org/operations/doku.php?id=tkp:compute].

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	Development Procedure

Accessing the Code

All code relating to the core TraP functionality is hosted in the
transientskp/tkp [https://github.com/transientskp/tkp] git repository
on GitHub [https://github.com/].

The repository is currently only available to authorized project members. If
you require access, contact git@transientskp.org for help. Please do
not redistribute the code without authorization.

You will need to be familiar with basic git operation before you can work
with the codebase. There are many excellent tutorials available: start at the
Git front page [http://www.git-scm.com/].

Planning

We aim to make releases of the TraP at the cadence of a few per year. Broadly,
the plan is to alternate technically focused releases, which clean up the
codebase and make behind-the-scenes improvements, with science based releases,
which provide new functionality to end users. Technical releases have odd
numbers; science releases even. We will provide bugfixes, but no new
development, for the most recent release; support for earlier releases is on a
“best efforts” basis only.

At the start of a release cycle, the developers and commissioners will meet to
discuss the issues which will be addressed in the upcoming release. Having
agreed upon a set of goals, a roadmap for the release will be created on the
Issue Tracker.

It is generally acceptable to submit minor changes and tweaks, as well as
bugfixes, to the codebase at any time. However, if you are planning a major
change which will have significant repercussions for other developers, or
which causes end-user visible changes, it should be included in the goals for
a particular release and there should be a broad consensus about the plan for
implementation before you begin coding.

Issue Tracker

We keep track of bug reports and feature requests using the
Github repository issue tracker [https://github.com/transientskp/tkp/issues].

We use the issue tracker extensively for project planning and managing
releases. It is not a hard requirement that every commit to the repository
refers to a particular issue, but you are strongly encouraged to record your
activities on the tracker and to refer to it in commit messages as
appropriate.

Coding Standards

We do not rigorously enforce a set of coding style rules, with the sole
exception that all indents in Python code should consist of 4 spaces. However,
all code is expected to be considerately written, appropriately (but not
excessively) commented, and as easy to read as possible. Please read PEP 8 [http://www.python.org/dev/peps/pep-0008/]
carefully and bear it in mind as you work.

You may wish to run pylint or similar tools on the codebase. Occasionally,
such tools can provide useful hints about how to make your code clearer: by
all means act upon these. However, much of the output of such tools is
subjective: be sure you understand and agree with their recommendations, and
be very reluctant to apply them to pre-existing code without fully considering
the implications.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	Development Procedure

Testing & Continuous Integration

The tests directory contains a (reasonably) comprehensive TraP test suite.
Tests are written following the Python unittest [https://docs.python.org/2/library/unittest.html] conventions. Although they
can be run using just the standard Python library tools, you might find that
nose [https://nose.readthedocs.org/en/latest/] provides a more convenient
interface.

Requirements

Whenever any changes are made to the code, all pre-extant tests must
continue to pass. If the change involves changing the result of one or more
tests, any such changes must be clearly explained and check during
Code Review.

New features and bug fixes must be accompanied by appropriate tests. These
should both demonstrate the correct operation of the code with good input data
as well as demonstrating how it responds to bad inputs. Again, the code
reviewer should check that the tests provided are clear and comprehensive.

Test data

Many of the tests require data files which are distributed separately from the
TraP. Having cloned the TraP repository (into the directory tkp in this
example), fetch the appropriate test data as follows:

$ cd tkp
$ git submodule init
$ git submodule update

In future, running git submodule update again will fetch the latest
version of the test data if required.

By default, the test suite will look for data in the appropriate subdirectory
of your checked out Trap source. However, if the data has been installed
elsewhere, or if you are running the test suite against an installed copy of
the TraP, you can specify the data location by exporting the TKP_TESTPATH
environment variable.

If the data is not available, the relevant tests will be skipped. The partial
test suite should still complete successfully; note that your copy of the TraP
will not be fully tested.

Database

Many of the tests require interaction with the pipeline database. A convient way to configure the database is by using
environment variables. For example:

$ export TKP_DBENGINE=xxx
$ export TKP_DBNAME=xxx
$ export TKP_DBHOST=xxx
$ export TKP_DBPORT=xxx
$ export TKP_DBUSER=xxx
$ export TKP_DBPASSWORD=xxx
$ trap-manage.py initdb

If you do not have or need a database, you can disable all the tests which
require it by exporting the variable TKP_DISABLEDB. The partial test suite
should still complete successfully, but your copy of the TraP will not be
fully tested.

Running the tests

Within the tests directory, use the runtests.py script to start the
test suite using nose:

$ cd tests
$ python runtests.py -v

Command line arguments (such as -v, above) are passed onwards to nose;
you can use them, for example, to select a particular subset of the suite to
run.

Often it is convenient to run the TraP against a work-in-progress version of
the TraP while continuing to use other libraries and tools installed on the
system. This just requires setting the PYTHONPATH environment variable to
the root of the development tree:

$ cd tkp
$ export PYTHONPATH=$(pwd):${PYTHONPATH}
$ cd tests
$ python runtests.py -v

Alternatively, you may choose to work with a virtualenv [http://virtualenv.readthedocs.org/en/latest/] and install the
TraP in ‘development mode’:

$ pip install --editable .

Continuous integration

There is a Jenkins instance at https://jenkins.transientskp.org/ which builds
and tests all code committed to the master branch as well as any incoming
pull requests. This constitutes the reference system on which tests are
required to pass: a failure here should result in a change being rejected,
regardless of its successful operation on some other system.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	Development Procedure

Documentation

Requirements

All parts of the TraP should be documented both at a level that is suitable
for end users using the pipeline and for developers who wish to understand,
fix and extend the codebase. Broadly, that distinction reflects the structure
of this manual. Note that we expect that developers will benefit from both
automatically generated API documentation making use of appropriate
docstrings in the code, and higher-level descriptions of system architecture
and functionality.

All new features or changes must be accompanied by appropriate
documentation. Reviewers are required to check that pull requests are well
documented before merging. See the material on Code Review for details.

Technical details

Documentation is written using Sphinx [http://www.sphinx-doc.org/]. The documentation for the HEAD of
the master branch of the transientskp/tkp repository is, together with
the documentation for all released versions, is automatically build every night
and put online at http://docs.transientskp.org/.

Docstrings should make use of the “Napoleon [https://pypi.python.org/pypi/sphinxcontrib-napoleon]” syntax. For example:

Args:
 path (str): The path of the file to wrap
 field_storage (FileStorage): The :class:`FileStorage` instance to wrap
 temporary (bool): Whether or not to delete the file when the File
 instance is destructed

Returns:
 BufferedFileStorage: A buffered writable file descriptor

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	Development Procedure

Code Review

Rather than pushing changes directly to transientskp/tkp, developers are
asked to submit their changes for review before they are merged into the
project. Ideally, this applies to all changes; however, it is recognized that
in certain cases – e.g. recovering from a previous mistake, or making trivial
formatting changes – pushing directly may be appropriate.

Code reviews are carried out using GitHub’s Pull Request [https://help.github.com/articles/using-pull-requests] functionality.

Submitting code for review

Using the GitHub web interface, “fork” a copy of the repository to your own
account (note that even if you do not have a paid GitHub account, forks of
private repositories remain private, so you are not exposing the code to the
outside world).

Clone a copy of your forked repository to your local system:

$ git clone git@github.com:<username>/tkp.git

Create a branch which you will use for working on your changes:

$ git checkout -b my_new_branch

Work on that branch, editing, adding, removing, etc as required. When you are
finished, push your changes pack to GitHub:

$ git push orign my_new_branch

Return to the GitHub web interface, and issue a pull request to merge your
<username>:my_new_branch into transientskp:master.

Reviewing code

Reviewing code is just as valuable an activity as creating it: all
developers are expected to handle a share of code reviews. The procedure is
simple: visit the GitHub web interface, and choose a pull request to review.
Look through it carefully, ensuring that it adheres to the guidelines below.
If you are happy with it, and it can be automatically merged, simply hit the
big green “Merge Pull Request”. If an automatic merge isn’t possible, you will
have to check out the code onto your system and merge it manually: this takes
a little time, but GitHub document the process.

If you aren’t happy with the code as submitted, you can use the GitHub web
interface to add both general comments covering the whole PR and to comment on
specific lines explaining what the problem is. You can even issue your own PR
suggesting new commits that the submitter could merge with their own work.
Please be as clear as possible and make constructive suggestions as to how the
submitter can make improvements: remember, the aim is to get high quality code
merged into the repository in a timely fashion, not to argue over obscure
minutiae!

Requirements for Pull Requests

When submitting or reviewing a pull request, please bear the following
guidelines in mind:

	PRs should be as concise and self-contained as possible. Sometimes, major
functionality changes will require large amounts of code to be changed, but
this should be the exception rather than the rule. Be considerate to the
reviewer and keep changes minimal!

	It is not required that reviewers check every line for
correctness, but they should read through the code and check that it is
clearly structured and reasonably transparent in operation.

	Effectively all requests should be accompanied by appropriate additions to
the test suite. If it is not possible to provide tests, the submitter should
explain why, and the reviewer must check and agree with this justification.

	Any changes to user-visible functionality must be accompanied by appropriate
updates to the Users’ Guide.

	Any changes to APIs or the structure of code must be accompanied by
appropriate updates to the Developers’ Reference.

	Both submitter and reviewer should check that the PR does not introduce any
regressions into the unit test results (ie, no tests which previously passed
should fail after merging.)

	Make sure that the version control history is readable. This means both
using descripive commit messages (future developers will not thank you for
recording that you did “stuff”), and appropriate use of git rebase to
eliminate dead-end and work-in-progress commits before submitting the code
for review.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	Development Procedure

Release procedure

Code and repository management

We use what is sometimes known as semantic release versioning [http://semver.org/].
We use branches to track major releases, and we tag all point releases,
which makes it easy to track down the relevant git history.

Versions are numbered in the format MAJOR.MINOR.PATCH,
where major releases break backwards compatibility, minor releases add
functionality without breaking backwards compatibility, and patch releases
are backwards-compatible bug fixes.

To make a release you should first create a new branch (if appropriate: see
below), then set the version number in the code, then tag the new release to
note the version number.

Major releases are sequentially numbered (1, 2, N). They happen on
a branch named releaseN. Create the branch as follows:

$ git checkout -b <releaseN>

Minor releases happen on existing release branches. They are named N.M,
where N is the major release version and M the minor version. The
first commit on every release branch corresponds to N.0.0. Check
out the relevant branch:

$ git checkout <releaseN>

Next, edit the code to set the version number in tkp/__init__.py.

Commit your changes. This commit is the basis of the release:

$ git commit -am "Release N.M.O"

Tag the release. This is important, as we use the tags to indicate which
versions should be built and added to the documentation site:

$ git tag -a "rN.M.O"

Push everything, including the tag, to GitHub:

$ git push --tags origin releaseN

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

The Pipeline Database

This section presents material related to the structure and maintenance of the
database used by the TraP.

	Schema reference
	Table Listing

	Appendices

	Source Association Logic
	Database Structure & Association Procedure

	Discussion

	Recommendations

	Detailed logic flow

	“How-To” notes on common tasks
	Recover from disappearing clients

	Create a schema diagram

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	The Pipeline Database

Schema reference

[image: ../../_images/schema.png]
Note that this diagram is periodically updated and may not reliably reflect
the current status of the development version.

Table Listing

assocxtrsource

This table stores the association between an extracted source and its
runningcatalog counterpart source, where the relation might be of type 1-1, 1-n
or n-1.

	runcat

	A reference to the runcatid in runningcatalog. It may be regarded
as the “base” identitfier of a lightcurve, whereas the lightcurve consist
of multiple frequency bands and Stokes parameters.

	xtrsrc

	This is the ID of the extracted source that could be associated to
runningcatalog source. Together, the runcat_id and the xtrsrc form
a unique pair.

	type

	Type of association, and its description. n-m, where n is the number of
runningcatalog sources, and m the number of extracted sources. (The
assignment of numbers is to association types is arbitrary.)

	type = 2

	Base point of a 1-n (one-to-many) association (relates to type = 6)

	type = 3

	1-1 association.

	type = 4

	0-1 (zero-to-one) association, i.e. a new source.

	type = 6

	Associations of 1-n (one-to-many) type. These are updates of
pre-existing associations, due to the 1-n case (relates to type =
2 association).

	type = 7

	Forced-fit to position of the null detection of a known source.

	type = 8

	Initial forced fit to a monitoring list position.

	type = 9

	Subsequent forced fit to a monitoring list position (relates to
type = 8.

Note that many-to-1 relations reduce to 1-to-1 and 1-to-many associations.
Therefore, there is no type specifying such a case.

	distance_arcsec

	The distance in arcsec between the associated sources, calculated by the
database using the dot product Cartesian coordinates

	r

	The dimensionless distance (De Ruiter radius) between the associated
sources. It is determined as the positional differences weighted by the
errors, calculated by the association procedure inside the database
(Scheers, 2011, chapter 3).

	loglr

	The logarithm of the likelihood ratio of the associated sources, defaults to
NULL if not calculated (Scheers, 2011, chapter 3).

	v_int

	The flux coefficient of variation [http://en.wikipedia.org/wiki/Coefficient_of_variation] , \(V_{\nu}\),
based on the integrated flux values up to this datapoint.

	eta_int

	The ‘reduced chi-squared’ variability index, \(\eta_{\nu}\), based on
the integrated flux values up to this datapoint.

	f_datapoints

	The number of flux datapoints (including the extractedsource
referenced in this entry) used to calculate the variability indices.

assocskyrgn

(See also skyregion table.)

This table records which runningcatalog sources
we expect to see in any given skyregion. This serves two purposes: it allows
us to determine when we do not see previously detected sources, presumably
because they have dropped in flux (see
tkp.db.nulldetections.get_nulldetections()). It also allows us to
determine whether a new runningcatalog entry (i.e. a newly detected source
without associated historical detections) is being detected for the first time
because it is actually a new transient, or if it is simply the first time that
region of sky has been surveyed (see
tkp.db.associations._determine_newsource_previous_limits()).

This table is updated under 2 circumstances:

	A new skyregion is processed, and associations must be made with pre-existing
runcat entries (see SQL function updateSkyRgnMembers).

	A new runningcatalog source is added, and must be associated with pre-existing
skyregions
(see tkp.db.associations._insert_new_runcat_skyrgn_assocs()).

	runcat

	References the associated runningcatalog ID.

	skyrgn

	References the associated skyregion ID.

	distance_deg

	Records the angular separation between the runningcatalog source and the
skyregion centre, at time of first association.

config

A simple table of (dataset, section, key, value, type) tuples, providing a
means of recording the contents of the job_params.cfg - Job Parameters Configuration file used to
initiate a particular TraP processing run.
This provides provenance and reproducibility for any given dataset.

dataset

The dataset table provides an id for grouping together results,
usually from a single run of the TraP.
As such, it represents a collection of images processed with a particular
configuration (see also the config table).

Note that it is possible to specify a dataset_id in order to process more
recent images as part of a pre-existing dataset, in which case the previously
stored configuration is loaded from the config table, to ensure consistency across
the dataset.

	id

	Every dataset gets a unique ID. The ID is generated by the database.

	rerun

	The value indicates how many times a dataset with a given description was
processed by the pipeline. Note that every dataset still has a unique id,
even when it was reprocessed. At insertion time this is incremented by 1
when the description of the dataset is already present in the table;
otherwise, it defaults to 0.

	type

	Not being used.

	process_start_ts

	The timestamp of the start of processing the dataset, generated by the
database.

	process_end_ts

	The timestamp of the completion of processing the dataset, generated by
the database. NULL if processing is ongoing.

	detection_threshold

	The detection threshold that was used by source finder to extract sources.
Value read from either the source finder parset file or the tkp.cfg file.
See the PySE documentation for more information.

	analysis_threshold

	The analysis threshold that was used by source finder to extract sources.
Value read from either the source finder parset file or the tkp.cfg file.
See the PySE documentation for more information.

	assoc_radius

	The association radius that is being used for associating sources. Value
read from either the source finder parset file or the tkp.cfg file.

	backsize_x

	Background grid segment size in x. Value read from either the source finder
parset file or the tkp.cfg file. See the PySE documentation
for more information.

	backsize_y

	Background grid segment size in y. Value read from either the source finder
parset file or the tkp.cfg file. See the PySE documentation
for more information.

	margin_width

	Margin applied to each edge of image (in pixels). Value read from either
the source finder parset file or the tkp.cfg file. See the PySE
documentation for more information.

	description

	A description of the dataset, with a maximum of 100 characters.

	node(s)

	Determine the current and number of nodes in case of a sharded database
set-up.

extractedsource

This table contains all the extracted sources (measurements) of an image.
Maybe source is not the right description, because measurements may be made
that were erronous and do not represent a source.

Most values come from the sourcefinder procedures, and some are auxiliary
deduced values generated by the database.

This table is empty before an observation. During an observation new
sources are inserted into this table. After an observation this table is
dumped and transported to the catalog database.

All detections (measurements) found by sourcefinder are appended to this table.
At insertion time some additional auxiliary parameters are calculated by the
database as well. At anytime, no entries will be deleted or updated.
The TraP may add forced-fit entries to this table as well. Then
extract_type is set to 1.

	id

	Every inserted source/measurement gets a unique id, generated by the
database.

	image

	The reference ID to the image from which this sources was extracted.

	zone

	The zone ID in which the source declination resides, calculated by the
database. The sphere is devided into zones of equal width: currently fixed
to 1 degree, and the zone is effectively the truncated declination.
(decl=31.3 => zone=31, decl=31.9 => zone=31). This column is primarly for
speeding up source look-up queries.

	ra

	Right ascension of the measurement (J2000 degrees). Calculated by the
sourcefinder procedures.

	decl

	Declination of the measurement (J2000 degrees). Calculated by the
sourcefinder procedures.

	ra_err

	The 1-sigma error on ra (degrees), i.e. the square root of the
quadratic sum of the fitted error (ra_fit_err) and the systematic
error (ew_sys_err) after the latter has been corrected for ra
inflation depending on declination. It is calculated by the database at
insertion time. Note that this error is declination dependent and the
source lies in the range [ra - ra_err, ra + ra_err].

	decl_err

	The 1-sigma error on declination (degrees), i.e. the square root of the
quadratic sum of the fitted error (decl_fit_err) and the systematic
error (ns_sys_err), calculated by the database at insertion time.
Note that the source lies in the range [decl - decl_err, decl +
decl_err]

	uncertainty_ew

	The 1-sigma on-sky error on ra (in the east-west direction) (degrees),
ie. the square root of the quadratic sum of the error radius
(error_radius) and the systematic error (ew_sys_err). It is
calculated by the database at insertion time. Note that this is a
positional uncertainty and is declination independent. This error is
being used in the De Ruiter calculations.

	uncertainty_ns

	Analogous to uncertainty_ew.

	ra_fit_err

	The 1-sigma error on ra (degrees) from the source gaussian fitting,
calculated by the sourcefinder procedures. It is important to note that a
source’s fitted ra error increases towards the poles, and is thus
declination dependent (see also error_radius).

	decl_fit_err

	The 1-sigma error from the source fitting for declination (degrees),
calculated by the sourcefinder procedures (see also error_radius).

	ew_sys_err

	The systematic error on RA (arcsec). (As an on-sky angular uncertainty,
independent of declination.) It is a telescope dependent error and is
provided by the user in the pipeline configuation.

	ns_sys_err

	Analogous to ew_sys_err.

	error_radius

	Estimate of the absolute angular error on a source’s central position
(arcsec). It is a pessimistic estimate, because it takes the sum of the
error along the X and Y axes.

	x, y, z

	Cartesian coordinate representation of RA and declination.

	racosdecl

	The product of RA and cosine of the declination. Helpful in source look-up
association queries where we use the De Ruiter radius as an association
parameter.

	margin

	Used for association procedures to take into account sources that lie close
to ra=0 & ra=360 meridian. NOTE: Not currently used.

	True: source is close to ra=0 meridian

	False: source is far away enough from the ra=0 meridian

det_sigma

The significance level of the detection: \(20 \times f_\mathrm{peak}
/ \mathrm{det_sigma}\) provides the detection RMS. See Spreeuw (2010).

	semimajor

	Semi-major axis that was used for gauss fitting (arcsec), calculated by
the sourcefinder procedures.

	semiminor

	Semi-minor axis that was used for gauss fitting (arcsec), calculated by
the sourcefinder procedures.

	pa

	Position Angle that was used for gauss fitting (from north through local
east, in degrees), calculated by the sourcefinder procedures.

	f_peak

	peak flux (Jy), calculated by the sourcefinder procedures.

	f_peak_err

	1-sigma error (Jy) of f_peak, calculated by the sourcefinder
procedures.

	f_int

	integrated flux (Jy), calculated by the sourcefinder procedures.

	f_int_err

	1-sigma error (Jy) of f_int, calculated by the sourcefinder
procedures.

	chisq, reduced_chisq

	Goodness of fit metrics for fitted Gaussian profiles.

Note

These provide useful information for e.g.
machine-classification and filtering of transient candidates, but
strictly speaking are not statistically valid (we might rename
them in a future release to avoid confusion).
See tkp.sourcefinder.fitting.goodness_of_fit() for
details.

	extract_type

	Reports how the source was extracted by sourcefinder (Spreeuw (2010)), Currently implemented values are:

	0: blind fit

	1: forced fit to pixel

	2: manually monitored position

	fit_type

	Reports what fitting type was used by sourcefinder (Spreeuw (2010)). Currently implemented values are:

	0: moments-based analysis

	1: Gaussian fitting

	ff_runcat

	Null, except when the extractedsource is a forced fit
requested due to a null-detection. In that case, it is used to link
null-detection extractions to their appropriate runningcatalog entry
via the assocxtrsource table. It will initially point to the
runningcatalog id which was null-detected, but may change back to Null later
on (after the initial association is recorded in assocxtrsource)
if the runningcatalog entry forks due to a one-to-many association.

	ff_monitor

	Null, except when the extractedsource is a forced fit requested for a
position in the monitor table. In that case, it identifies the
relevant monitor entry, and is used in the association process.

	node(s)

	Determine the current and number of nodes in case of a sharded database
set-up.

frequencyband

This table contains the frequency bands that are being used inside the
database. Here we adopt the set of pre-defined Standard LOFAR Frequency Bands
and their bandwidths as defined for MSSS [http://www.lofar.org/wiki/doku.php?id=msss:documentation#standard_msss-lba_frequency_bands]. Included are frequency bands
outside the LOFAR bands, in order to match the external catalogue frequency
bands. When an image is taken at an unknown band, it is added to this table
by the SQL function getBand(). To make it possible to easily compare
images with slightly different effective frequencies, new bands are
constructed by rounding the effective frequency to the nearest MHz, and
assuming a band width of 1 MHz.

	id

	Every frequency band has its unique ID, generated by the database.

	freq_central

	The central frequency (Hz) of the defined frequency band. (Note that this is not
the effective frequency, which is stored as a property in the image table.)

	freq_low

	The low end of the frequency band (Hz).

	freq_high

	The high end of the frequency band (Hz).

image

This table contains the images that are being or were processed in the TraP.
Note that the format of the image is not stored as an image property. An
image might be a composite of multiple images, but it is not yet defined how
the individual values for effective frequency, integration times, etc are
propagated to the columns of the image table. The CASA image description
for LOFAR [http://www.lofar.org/operations/lib/exe/fetch.php?media=public:documents:casa_image_for_lofar_0.03.00.pdf>`_] describes the structure of a LOFAR CASA Image, from which most of
the data of the image table originates.

An image is characterised by

	observation timestamp (taustart_ts);

	integration time (tau);

	frequency band (band);

	Stokes parameter (stokes).

A group of images that belong together (defined by user, but not specified any
further) are in the same data set (i.e. they have the same reference to
dataset).

	id

	Every image is assigned a unique ID by the database.

	dataset

	The dataset to which the image belongs.

	tau

	The integration time of the image. This is a quick reference number
related to tau_time. Currently this is not used.

	band

	The frequency band at which the observation was carried out. Its value
refers to the ID in frequencyband, where the frequency bands are
predefined. The image’s effective frequency falls within this band. If an
image has observation frequency that is not in this table, a new entry
will be created based an the effective

	stokes

	The Stokes parameter of the observation. 1 = I, 2 = Q, 3 = U and 4 = V.
The Stokes parameter originates or is read from the CASA Main table in the
coords subsection from the stokesX record. The char value is
converted by the database to one of the four (tiny) integers.

	tau_time

	The integration time (in seconds) of the image. The value originates or
is read from the CASA LOFAR_OBSERVATION table by differencing the
OBSERVATION_END and OBSERVATION_START data fields.

	freq_eff

	The effective frequency (or synonymously rest frequency) (in Hz) at which
the observation was carried out. The value originates or is read from the
CASA Main table in the coords subsection from the spectralX record and
the crval field. Note that in the case of FITS files the header
keywords representing the effective frequency are not uniquely defined and
may differ per FITS file.

	freq_bw

	The frequency bandwidth (Hz) of the observation. Value originates or
is read from the CASA Main table in the coords subsection from the
spectralX record and the cdelt field. N This is a required value
and when it is not available an error is thrown.

	taustart_ts

	The timestamp of the start of the observation, originating or read from
the CASA LOFAR_OBSERVATION table from the OBSERVATION_START data field.

	skyrgn

	The sky region to which the image belongs.

	rb_smaj

	The semi-major axis of the restoring beam, in degrees. Full major axis
value originates or is read from the CASA Main table in the imageinfor
subsection from the restoringbeam record and is converted at db
insertion time.

rb_smin

The semi-minor axis of the restoring beam, in degrees. Full minor axis
value originates or is read from the CASA Main table in the imageinfor
subsection from the restoringbeam record and is converted at db
insertion time.

	rb_pa

	The position angle of the restoring beam (from north to east to the major
axis), in degrees. Value originates or is read from the CASA Main table
in the imageinfor subsection from the restoringbeam record.

	deltax, deltay

	Pixel sizes along the X & Y axes in degrees.

	fwhm_arcsec

	The full width half maximum of the primary beam, in arcsec. Value not yet
stored in table.

	fov_degrees

	The field of view of the image, in square degrees. Not yet stored in table.

	rms_qc

	RMS for quality-control. This is the sigma-clipped RMS value from the
central region of the image, calculated in the persistence step.

	rms_min, rms_max

	The minimum and maximum values of the estimated-RMS-map within the
source-extraction region. Used when determining if a newly-detected source
is a probable transient, or just due to deeper imaging.

	detection_thresh, analysis_thresh

	The detection and analysis thresholds (as a multiple of the local RMS value)
used in the source extraction process for this image.

	url

	The url of the physical location of the image at the time of processing.
NOTE that this needs to be updated when the image is moved.

	node(s)

	Determine the current and number of nodes in case of a sharded database
set-up.

monitor

This table stores the user-requested monitoring positions for a dataset.

	id

	Every position in the monitor table gets a unique id.

	dataset

	The relevant dataset ID - monitoring positions are dataset-specific.

	ra, decl

	The position coordinates (J2000 degrees).

	runcat

	Initially NULL. When a forced-fit is first made to a monitoring position,
this column is updated to point to the relevant entry in the runningcatalog.

	name

	A short descriptive name, e.g. GRB140101A or SNe150101, for more
user-friendly display of results.
This functionality is not currently implemented, but the presence of this
column allows it to be trivially implemented in future without requiring
a database migration.

newsource

For discovering transient or variable sources, our primary tools are variability
statistics. However, a bright single-epoch source cannot sensibly be assigned
variability statistics until at least a second measurement
(possibly non-detection) has been made.

This table tracks new sources, in the hopes that new sources considered
sufficiently bright enough to be interesting may be flagged up immediately.

See tkp.db.associations._determine_newsource_previous_limits() for
details on how these values are assigned.

	id

	Unique identifier, set by the database.

	runcat

	Reference to the associated runningcatalog entry.

	trigger_xtrsrc

	Reference to the extracted source that caused insertion of this
newsource.

	newsource_type

	Refers to how certain we are that the newly discovered source is
really “physically new”, i.e. transient. Since we do not store fine-grained
noise-maps in the database, we must be fairly conservative in our labelling
here.

Type 0 sources may be a steady source located in a high-RMS region,
newly detected due to noise fluctuations, or may be a real
transient in a low-RMS region.

Type 1 sources are bright enough that we can be fairly certain
they are really new - they are significantly brighter than the rms_max
in the previous image with best detection limits.

	previous_limits_image

	The ID of the previous image with the best upper limits on previous
detections of this source. Can be used to calculate the significance
level of the new-source detection.

node

This table keeps track of zones (declinations) of the stored sources on the
nodes in a sharded database configuration. Every node in such a set-up will
have this table, but with different content.

	node

	The ID of the node

	zone

	The zone that is available on the node

	zone_min

	The minimum zone of the zones

	zone_max

	The maximum zone of the zones

	zone_min_incl

	Boolean determining whether the minimum zone is included.

	zone_max_incl

	Boolean determining whether the maximum zone is included.

	zoneheight

	The zone height of a zone, in degrees

	nodes

	The total number of nodes in the sharded database configuration.

Note

The following sections on the runningcatalog, runningcatalog_flux and
temprunningcatalog_flux are annotated using the style of mathematical
notations developed in the Appendix.

rejection

This table contains all rejected images and a reference to the reason.

	id

	The database ID of the rejection.

	image

	A foreign key relationship to the image ID of the rejected image.

	rejectreason

	A foreign key relationship to the ID of the rejection reason.

	comment

	A textfield with more details about the reason for rejection. For example
in the case of a rejection because of RMS value to high, this field will
contain the theoretical noise value and the calculated RMS value of the
image.

rejectreason

This table contains all the possible reasons for rejecting an image.

	id

	The database ID of the rejection reason.

	description

	An description of the rejection.

runningcatalog

(See Appendices for explanation of mathematical notation.)

While a single entry in extractedsource corresponds to an individual
source measurement, a single entry in runningcatalog corresponds to a
unique astronomical source detected in a specific dataset (series of images).
The position of this unique source is a weighted mean of all its individual
source measurements. The relation between a runningcatalog source and all
its measurements in extractedsource is maintained in assocxtrsource.

The association procedure matches extracted sources with counterpart
candidates in the runningcatalog table. Depending on their association
parameters (distance and De Ruiter radius) of the runningcatalog source
and extractedsource source, the source pair ids are added to
assocxtrsource. The source properties, position, fluxes and their errors
in the runningcatalog and runningcatalog_flux tables are then updated
to include the counterpart values from the extracted source as a new
datapoint.

If no counterpart could be found for an extracted sources, it is appended to
runningcatalog as a “new” source (datapoint=1).

	id

	Every source in the running catalog gets a unique ID.

	xtrsrc

	The ID of the extractedsource for which this runningcatalog source was
detected for the first time.

	dataset

	The dataset to which the runningcatalog source belongs to.

	datapoints \(= N_\alpha\) or equivalently \(N_\delta\)

	The number of datapoints (or number of times this source was detected)
that is included in the calculation of the position averages. It is
assumed that a source’s position stays relatively constant across bands
and therefore all bands are included in averaging the position.

	zone

	The zone ID in which the source declination resides. The sphere is divided
into zones of equal width: here fixed to 1 degree, and the zone is
effectively the truncated declination. (decl=31.3 => zone=31, decl=31.9 =>
zone=31)

	wm_ra \(= \xi_{\alpha}\)

	The weighted mean of RA of the source [in J2000 degrees].

	wm_decl \(=\xi_{\delta}\)

	The weighted mean of Declination of the source [in J2000 degrees].

	wm_uncertainty_ew

	The positional on-sky uncertainty in the east-west direction of the
weighted mean RA (degrees).

	wm_uncertainty_ns

	The positional on-sky uncertainty in the north-south direction of the
weighted mean Dec (degrees).

	avg_ra_err

	The average of the ra_err of the source (degrees).

	avg_decl_err

	The average of the decl_err of the source (degrees).

	avg_wra \(=\overline{w_{\alpha}\alpha}\)

	The average of (the square of ra/uncertainty_ew). Used for calculating the
weighted mean of the RA.

	avg_wdecl \(=\overline{w_{\delta}\delta}\)

	Analogous to avg_wra.

	avg_weight_ra \(=\overline{w_{\alpha}}\)

	The average of the reciprocal of the square of uncertainty_eq. Used
for calculating the weighted mean of the RA.

	avg_weight_decl \(=\overline{w_{\delta}}\)

	Analogous to avg_weight_ra.

	x, y, z

	The Cartesian coordinate representation of wm_ra and wm_decl.

	inactive

	Boolean to set an entry to inactive. This is done during the source
association procedure, where e.g. the many-to-many cases
are handled and an existing entry is replaced by two or more entries.

	mon_src

	Boolean to indicate whether an entry is from the user-specified monitoring list.
Default value is false.

runningcatalog_flux

The runningcatalog_flux table contains the averaged flux measurements of a
runningcatalog source, per band and stokes parameter. The combination runcat,
band and stokes is the primary key.

The flux squared and weights are used for calculations of the variability
indices, \(V_\nu\) and \(\eta_\nu\).

	runcat

	The id of the runningcatalog entry to which this band/stokes/flux
belongs.

	band

	Reference to the frequency band of this flux.

	stokes

	Stokes parameter: 1 = I, 2 = Q, 3 = U, 4 = V.

	f_datapoints \(=N_I\)

	The number of flux datapoints for which the flux averages were calculated.

	avg_f_peak \(=\overline{I}\)

	Average of peak flux.

	avg_f_peak_sq \(=\overline{{I}^2}\)

	Average of (peak flux squared).

	avg_f_peak_weight \(=\overline{w_{I}}\)

	Average of one over peak flux errors squared.

	avg_weighted_f_peak \(=\overline{w_{I} I}\)

	Average of ratio of (peak flux) and (peak flux errors squared).

	avg_weighted_f_peak_sq \(=\overline{w_{I} I^2}\)

	Average of (weighted peak flux squared).

	avg_f_int, avg_f_int_sq, avg_f_int_weight, avg_weighted_f_int, avg_weighted_f_int_sq

	Analogous to those above, except for the integrated flux.

skyregion

Entries in this table represent regions of sky which have been, or will
shortly be, processed via the usual extract-sources-and-associate procedures.
By listing regions of sky in a dedicated table, we de-duplicate information
that would otherwise be repeated for many images.

When an image is first inserted into the database, the SQL function
getSkyRgn is called. This first checks for the pre-existence of a matching
skyregion entry. If none exists, then a new entry is created and the SQL
function updateSkyRgnMembers is called to update the assocskyrgn table as necessary.

See also assocskyrgn.

	dataset

	Reference to the dataset id, for the dataset to which the skyregion
belongs. This field is needed in order to restrict association to the
current dataset.

	centre_ra and centre_decl

	The central coordinates (J2000) (or pointing centre) of the region, in
degrees. RA and Dec values are read from DataAccessor metadata.

	xtr_radius

	The radius of the circular mask used for source extraction, in degrees.
This is calculated from the extraction_radius_pix parameter and the
image metadata during the persistence pipeline stage.

	x, y and z

	The Cartesian coordinates of centre_ra and centre_decl.

temprunningcatalog

(See also source association detailed logic.)

Most of the entries in the temprunningcatalog are identical to those of
the same name in runningcatalog and
runningcatalog_flux, except updated to include the information
from a new extractedsource. Those without direct counterparts in those
tables are listed below.

	runcat

	Reference to the runningcatalog id. runcat and xtrsrc
together form a unique key.

	xtrsrc

	Reference to the extractedsource id. runcat and xtrsrc
together form a unique combination.

	distance_arcsec

	The distance in arcsec on the sky of the runcat - xtrsrc
association, as calculated by the database.

	r

	The De Ruiter radius of the runcat - xtrsrc association,
calculated by the database.

	inactive

	During evaluation of the association pairs, some pairs might be set to
inactive (TRUE), defaults to FALSE.

	beam_semimaj, beam_semimin, beam_pa

	Not currently used.

version

This table contains the current schema version of the database. Every schema
upgrade will increment the value by 1.

	name

	The name of the version.

	value

	The version number, which increments after every database change.

Appendices

On iteratively updated weighted means

We now take a diversion to note the mechanics of storing and updating weighted
means - this happens a lot in the database.

We define the average (specifically, the arithmetic mean) of \(x\) as

\[\overline{x}_N = \frac{1}{N} \sum_{i=1}^{N} x_i\]

where \(x_i\) is the \(i\) th measurement of \(x\).

We may update this in an iterative fashion.
If we add the next datapoint, \(x_{N+1}\), to it, we can build the
new average as:

(1)\[\overline{x}_{N+1} = \frac{N \overline{x}_N + x_{N+1}}{N+1} .\]

We now treat weighted means.

We first define the weight of the \(i\) th measurement of x,

\[w_{x_i} = 1/{e_{x_i}}^2\]

where \(e_{x_i}\) is the one-sigma error in the \(i\) th measurement
of x.

We can now define a weighted mean of N measurements of \(x\);
\(\xi_{x_N}\) as:

\[\xi_{x_N} = \frac{\sum_{i=1}^{N} w_{x_i} x_i}{\sum_{i=1}^{N} w_{x_i}}.\]

To update this weighted average,
we first define the sum of the weights as

\[W_{x_N} = \sum_{i=1}^{N} w_{x_i}\]

we may then calculate the weighted average after N+1 measurements as:

(2)\[\xi_{x_{N+1}} = \frac{ W_{x_N} \xi_{{x_N}} + w_{{x_{N+1}}}x_{N+1}}
 { W_{x_N} + w_{x_{N+1}} }\]

Note, if we define the mean or ‘bar’ operator such that:

\[\overline{y}_{N} = \frac{\sum_{i=1}^{N} y_i}{N}\]

for any variable \(y\), then

\[\overline{w}_{x_N} = \frac{\sum_{i=1}^{N} w_{x_i}}{N} = \frac{W_{x_N}}{N}\]

and we may use the formula:

(3)\[\xi_{x_{N+1}} =
 \frac{ N \overline{w}_{x_N} \xi_{x_N} + w_{x_{N+1}}x_{N+1}}
 { N \overline{w}_{x_N} + w_{x_{N+1}} }\]

(Note how this simplifies if \(w_i = 1 \quad \forall i\))

Warning

For tracking Ra and Dec (\(\alpha\) and \(\delta\)) weighted
means, we substitute

\[N \overline{ w_{\alpha_N} } \xi_{\alpha_N} =
N \overline{ (w_{\alpha} \alpha)_N}\]

to yield another manipulation of the update formula:

(4)\[\xi_{\alpha_{N+1}} =
 \frac{ N \overline{ (w_{\alpha} \alpha)_N} + w_{\alpha_{N+1}}\alpha_{N+1}}
 { N \overline{w}_{\alpha_N} + w_{\alpha_{N+1}} }\]

Note that this requires that we also keep track of the extra aggregate
value: \(\overline{ (w_{\alpha} \alpha)_N}\), which is probably
unnecessary given that we are not performing reduced-\(\chi^2\) stats
on the position.

In general, we perform similar tricks with aggregate values (i.e. storing the
‘barred’ values of variables) throughout the database code. This has pros and
cons - it makes the equations below a little prettier (and possibly simpler to
compute), but requires many multiplications and divisions by the factor
\(N\) (hence, also possibly harder to compute - this may be worth careful
consideration during the next big code review).

On ‘aggregated’ variability indexes

We now explain how running averages are used to compute the ‘variability indices’
we use in identifying sources which may be intrinsically transient or variable.
Adapted from Scheers (2011).

The first variability indicator, the proportional flux variability of a
source, is expressed as the ratio of the sample standard deviation, and mean,
of the flux \(I\); that is to say:

\[V = \frac{ s}{ \overline{I} }\]

where \(s\) is the unbiased sample standard deviation:

\[s = \sqrt{ \frac{1}{N-1} \sum_{i=1}^N \left(I_i - \overline{I} \right)^2 }\]

Note

In general, we may consider calculating all these values per frequency-band
and subscript them by band central frequency \(\nu\), but we neglect such
details here for simplicity.

Written in its well known ‘aggregate’ form, it is now easy to handle bulk
data, and is defined as

\[V = \frac{1}{\overline{I}}
 \sqrt{ \frac{N}{N-1}
 \left(\overline{{I}^2} - \overline{I}^2 \right)
 }\]

The second indicator, the significance of the flux variability, is based on
reduced \(\chi^2\) statistics. We derive the aggregate form here.

We begin with the familiar reduced-\(\chi^2\) formula, except with the
regular arithmetic mean \(\overline{I}\) replaced by the
weighted mean \(\xi_{I_N}\),

\[\xi_{I_N} = \frac{\sum_{i=1}^{N} w_i I_i}{\sum_{i=1}^{N} w_i}
 = \frac{\overline{w_i I_i} }{ \overline{w_i}},\]

resulting in:

\[\eta = \frac{1}{N-1}
 \sum_{i=1}^N
 \frac{\left(I_i - \xi_{I_N} \right)^2}
 {e_i^2}\]

where \(e_i\) is the estimated uncertainty, or standard deviation,
in \(I_i\). We may rewrite this using \(\frac{1}{e_i^2} = w_i\):

\[\eta = \frac{N}{N-1}\lgroup \frac{1}{N}
 \sum_{i=1}^N w_i \left(I_i - \xi_{I_N} \right)^2 \rgroup\]

Expanding inside the brackets gives:

\[\frac{1}{N}\sum_{i=1}^N
 w_i \left(I_i^2 - 2\xi_{I_N} I_i + \xi_{I_N}^2 \right)\]\[= \frac{1}{N} \sum_{i=1}^N w_i I_i^2
 - 2\xi_{I_N} \frac{1}{N}\sum_{i=1}^N w_i I_i
 + \xi_{I_N}^2 \frac{1}{N}\sum_{i=1}^N w_i\]\[= \overline{w_i I_i^2} - 2\xi_{I_N} \overline{w_i I_i} +\xi_{I_N}^2 \overline{w_i}
 \qquad .\]

Expanding for \(\xi_{I_N}\) results in the final aggregate form of
the reduced-\(\chi^2\):

\[\eta = \frac{N}{N-1}
 \left(
 \overline{w {I}^2}
 -
 \frac{\overline{w I}^2}{\overline{w}}
 \right)\]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	The Pipeline Database

Source Association Logic

Source association—the process by which individual measurements recorded from
an image corresponding to a given time, frequency and Stokes parameter are
combined to form a lightcurve representing an astronomical source—is
fundamental to the goals of the Transients KSP. However, the process is
complex and may be counterintuitive. A thorough understanding is essential
both to enable end-users to interpret pipeline results and to inform pipeline
design decisions.

Here, we summarise the various possible results of source association,
highlighting potential issues. For a full discussion of the algorithms
involved, the user is referred to Scheers (2011).

Database Structure & Association Procedure

The structure of the database is discussed in detail elsewhere: here, only a brief overview of the relevant tables is
presented.

Each measurement (that is, a set of coordinates, a shape, and a flux) taken is
inserted into the extractedsource table. Many such measurements may be
taken from a single image, either due to “blind” source finding (that is,
automatically attempting to locate islands of significant bright pixels), or
by a user-requested fit to a specific position.

The association procedure knits together (“associates”) the measurements in
extractedsource which are believed to originate from a single
astronomical source. Each such source is given an entry in the
runningcatalog table which ties together all of the measurements by means
of the assocxtrsource table. Thus, an entry in runningcatalog can be
thought of as a reference to the lightcurve of a particular source.

Each lightcurve may be composed of measurements in one or more frequency bands
(as defined in the frequencyband table). Within each band flux
measurements are collated. These include the average flux of the source in
that band, as well as assorted measures of variability. Each row in the
runningcatalog_flux table contains flux statistics of this sort for a
given band of a given flux. Thus, each row in runningcatalog may be
associated with both multiple rows in extractedsource and in
runningcatalog_flux. Bear in mind, however, that each lightcurve has a
single average position associated with it, stored in the runningcatalog
table.

When a new source measurement is made, the association procedure compares it
against the records in runningcatalog. Note that the comparison is based
upon position only: an association is made if the new measurement is a good
fit with a position in runningcatalog, regardless of the time or frequency
associated with it. After the association has been made, the position recorded
for the source in runningcatalog is updated to take account of the new
measurement.

It is important to note that source association must as far as possible be
commutative. That is, given a set of measurements, the final contents of the
database should not be dependent upon the order of their insertion. This is
not possible in the general case—it would involve a quadratic number of
source comparisons—but source association procedures should be designed with
this goal in mind. In particular, we require that source association be
commutative if all measurements made at time \(t_n\) are inserted and
associated before any measurements made at time \(t_{n+1}\).

Case Studies

Here we will discuss the various outcomes which are possible from the source
association process under different conditions. In the following, individual
timesteps are indicated by the notation \(t_i\) and individual flux measurements
(that is, at a particular time/band/Stokes) by \(f_j\). Lightcurves (entries in
runningcatalog) are indicated by \(L_k\); the flux measurements which
constitute a particular lightcurve are linked to the \(L_k\) symbol by means of a
coloured line.

Single Frequency Band

We start by considering observations with only a single frequency band.

One-to-One Association

[image: digraph one2one { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f1 -> f2 -> f3 -> f4 [color=blue]; node[shape=box, color=red]; l1 [label=<L₁>]; f4 -> l1 [style=dashed, color=blue]; node[shape=none]; edge[style=invis]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

In this simplest case all the flux measurements are unambiguously associated
in order. A single lightcurve is generated. The calculated average flux of the
lightcurve \(L_1\) is \(\overline{f_{1\cdots{}4}}\).

One-to-Many Association

[image: digraph one2many { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f5 [label=<f₅>]; f6 [label=<f₆>]; f1 -> f2 -> f3 -> f5 [color=blue]; f1 -> f2 -> f4 -> f6 [color=green]; node[shape=box, color=red]; l1 [label=<L₁>]; l2 [label=<L₂>]; f5 -> l1 [color=blue, style=dashed]; f6 -> l2 [color=green, style=dashed]; edge[style=invis]; node[shape=none]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

Here, both \(f_3\) and \(f_4\) can be associated with the lightcurve
containing \(f_2\) and \(f_1\): a “one-to-many” association. Since
\(f_3\) and \(f_4\) are distinct, though, they result in two entries
in the runningcatalog table, or, equivalently, two lightcurves:
\(L_1\) with average flux \(\overline{f_{1,2,3,5}}\) and \(L_2\)
with average flux \(\overline{f_{1,2,4,6}}\).

Note that \(f_1\) and \(f_2\): are now being counted twice. Even if
\(f_3\) and \(f_4\) each contribute only half the total flux of
\(f_2\), the total brightness reached by summing all the lightcurve fluxes
increases when this occurs. Equivalently, increasing the spatial resolution
of the telescope causes the sky to get brighter!

Many-to-One Association

[image: digraph many2one { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f5 [label=<f₅>]; f6 [label=<f₆>]; f1 -> f3 -> f5 -> f6 [color=blue]; f2 -> f4 -> f5 -> f6 [color=green]; node[shape=box, color=red]; l1 [label=<L₁>]; l2 [label=<L₂>]; f6 -> l1 [style=dashed, color=blue]; f6 -> l2 [style=dashed, color=green]; edge[style=invis]; node[shape=none]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

This situation is similar to that seen above, but in reverse. Initially, two
lightcurves are seen \(L_1\) consisting of \(f_1\) and \(f_3\) and
\(L_2\) consisting of \(f_2\) and \(f_4\). However, at timestep
\(t_3\) a new measurement is made, \(f_5\), which is associated with both
\(L_1\) and \(L_2\). This, and the subsequent measurement \(f_6\),
are then appended to both lightcurves, resulting in \(L_1\) having average
flux \(\overline{f_{1,3,5,6}}\) and \(L_2\) having average flux
\(\overline{f_{2,4,5,6}}\). Again, note that \(f_5\) and \(f_6\)
are counted twice.

Many-to-Many Association

Note

First we illustrate “true” many-to-many association. However, for reasons
that will become obvious, this is never actually performed: instead, we
reduce it to a simpler, one-to-one or one-to-many association.

[image: digraph many2many { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f5 [label=<f₅>]; f6 [label=<f₆>]; f7 [label=<f₇>]; f8 [label=<f₈>]; f1 -> f3 -> f5 -> f7 [color=blue]; f2 -> f4 -> f6 -> f8 [color=green]; f1 -> f3 -> f6 -> f8 [color=coral]; f2 -> f4 -> f5 -> f7 [color=gold]; f1 -> f3 -> f6 -> f7 [color=aquamarine]; f2 -> f4 -> f5 -> f8 [color=blueviolet]; f1 -> f3 -> f5 -> f8 [color=darkslateblue]; f2 -> f4 -> f6 -> f7 [color=lawngreen]; node[shape=box, color=red]; l1 [label=<L₁>]; l2 [label=<L₂>]; l3 [label=<L₃>]; l4 [label=<L₄>]; l5 [label=<L₅>]; l6 [label=<L₆>]; l7 [label=<L₇>]; l8 [label=<L₈>]; f7 -> l1 [style=dashed, color=blue]; f8 -> l2 [style=dashed, color=green]; f8 -> l3 [style=dashed, color=coral]; f7 -> l4 [style=dashed, color=gold]; f7 -> l5 [style=dashed, color=aquamarine]; f8 -> l6 [style=dashed, color=blueviolet]; f8 -> l7 [style=dashed, color=darkslateblue]; f7 -> l8 [style=dashed, color=lawngreen]; edge[style=invis]; node[shape=none]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

As shown above, many-to-many association grows quadratically in complexity, as
every possible combination of sources involved in the association results in a
new lightcurve. Further, assuming that neither the sky nor the telescope
configuration change significantly from observation to observation, it’s
likely that subsequent measurements will also result in many-to-many
associations, doubling the number of lightcurves at every timestep.

It should be obvious that the scenario described is untenable. Instead, all
many-to-many associations are automatically reduced by only taking the source
pairs with the smallest De Ruiter radii such that they become either
one-to-one or one-to-many associations.

For example, using this criterion, both \(f_5\) and \(f_6\) might be
associated with a lightcurve consisting of \(f_1\) and \(f_3\) in the
above. The following situation results:

[image: digraph many2many { rankdir=LR; { rank = same; f1 [label=<f₁>]; f2 [label=<f₂>]; } { rank = same; f3 [label=<f₃>]; f4 [label=<f₄>]; } f5 [label=<f₅>]; f6 [label=<f₆>]; f7 [label=<f₇>]; f8 [label=<f₈>]; f1 -> f3 -> f5 -> f7 [color=blue]; f2 -> f4 [color=green]; f1 -> f3 -> f6 -> f8 [color=gold]; { rank = same; node[shape=box, color=red]; l1 [label=<L₁>]; l2 [label=<L₂>]; l3 [label=<L₃>]; } f7 -> l1 [style=dashed, color=blue]; f4 -> l2 [style=dashed, color=green]; f8 -> l3 [style=dashed, color=gold]; edge[style=invis]; node[shape=none]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

Note that \(L_2\) contains no measurements for timesteps later than
\(t_2\): the many-to-many association is removed, but at the cost of
truncating this lightcurve.

Multiple Frequency Bands

We now introduce the added complexity of multiple bands: the same part of the
sky being observed at the same time, but at different frequencies. Here, we
use just two bands for illustration, but in practice several could be
involved.

When considering multiple frequency bands, the same association procedure,
based only on position, as described above, is employed. However, extra care
must be taken to ensure that the commutative nature of association is
preserved.

Multi-Band One-to-One Association

[image: digraph one2one { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f5 [label=<f₅>]; f6 [label=<f₆>]; f7 [label=<f₇>]; f8 [label=<f₈>]; subgraph cluster0 { node [style=filled,color=white]; f1 -> f2 -> f3 -> f4 [color=blue]; label = "Band 1"; } subgraph cluster1 { rank = min; node [style=filled]; f5 -> f6 -> f7 -> f8 [color=blue]; label = "Band 2"; } edge[color=blue, style=dashed, constraint=true]; f8 -> l1; f4 -> l1; l1[label=<L₁>, shape=box, color=red]; node[shape=none]; edge[style=invis]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

In the simplest case, a one-to-one association is made between each
measurement and an entry in the runningcatalog table. A single lightcurve
results, which we label \(L_1\), but for which two average fluxes are
calculated: \(\overline{f_{1\cdots{}4}}\) in band 1 and
\(\overline{f_{5\cdots{}8}}\) in band 2.

Multi-Band One-to-Many Association

[image: digraph one2many { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f5 [label=<f₅>]; f6 [label=<f₆>]; f7 [label=<f₇>]; f8 [label=<f₈>]; f9 [label=<f₉>]; f10 [label=<f₁₀>]; subgraph cluster0 { node [style=filled,color=white]; f1 -> f2 -> f3 -> f5 [color=blue]; f1 -> f2 -> f4 -> f6 [color=green]; label = "Band 1"; } subgraph cluster1 { rank = min; node [style=filled]; f7 -> f8 -> f9 -> f10 [color=blue]; f7 -> f8 -> f9 -> f10 [color=green]; label = "Band 2"; } f5 -> l1 [style=dashed, color=blue]; f10 -> l1 [style=dashed, color=blue]; l1[label=<L₁>, shape=box, color=red]; f6 -> l2 [style=dashed, color=green]; f10 -> l2 [style=dashed, color=green]; l2[label=<L₂>, shape=box, color=red]; node[shape=none]; edge[style=invis]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

Initially, we proceed as above. However, at \(t_3\), a one-to-many
association takes place in Band 1. That band therefore bifurcates, and we are
left with two lightcurves: \(L_1\) and \(L_2\).

No such bifurcation is seen in Band 2. The single measurement \(f_9\) may
be associated with one or both of \(L_1\) and \(L_2\), depending on
their relative positions. In the former case, one of the lightcurves is
truncated in Band 2. In the latter, a chain of one-to-many associations takes
place with measurements in this band, as both \(f_9\) and \(f_{10}\)
are associated with both lightcurves.

In the situation shown, the resulting average fluxes for \(L_1\) are
\(\overline{f_{1,2,3,5}}\) in Band 1 and
\(\overline{f_{7\cdots{}10}}\) in Band 2, while those for \(L_2\) are
\(\overline{f_{1,2,4,6}}\) and \(\overline{f_{7\cdots{}10}}\)
respectively. Note that the entire flux in Band 2, as well as \(f_1\) and
\(f_2\), is now counted twice.

Multi-Band Many-to-One Association

[image: digraph many2one { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f5 [label=<f₅>]; f6 [label=<f₆>]; f7 [label=<f₇>]; f8 [label=<f₈>]; f9 [label=<f₉>]; f10 [label=<f₁₀>]; f11 [label=<f₁₁>]; f12 [label=<f₁₂>]; f13 [label=<f₁₃>]; f14 [label=<f₁₄>]; subgraph cluster0 { node [style=filled,color=white]; f1 -> f3 -> f5 -> f6 [color=blue]; f2 -> f4 -> f5 -> f6 [color=green]; label = "Band 1"; } subgraph cluster1 { rank = min; node [style=filled]; f7 -> f9 -> f11 -> f13 [color=blue]; f8 -> f10 -> f12 -> f14 [color=green]; label = "Band 2"; } f6 -> l1 [style=dashed, color=blue]; f13 -> l1 [style=dashed, color=blue]; l1[label=<L₁>, shape=box, color=red]; f6 -> l2 [style=dashed, color=green]; f14 -> l2 [style=dashed, color=green]; l2[label=<L₂>, shape=box, color=red]; node[shape=none]; edge[style=invis]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

At first, \(L_1\) and \(L_2\) are completely independent. However, at
\(t_3\), \(f_5\) undergoes a many-to-one association with both of
them. The same applies to \(f_6\). In Band 2, the lightcurves remain
independent. \(L_1\) therefore has average fluxes
\(\overline{f_{1,3,5,6}}\) in Band 1 and \(\overline{f_{7,9,11,13}}\)
in Band 2, and \(L_2\) has average fluxes \(\overline{f_{2,4,5,6}}\)
in Band 1 and \(\overline{f_{8,10,12,14}}\) in Band 2.

Multi-Band Many-to-One Association (2)

[image: digraph many2one { rankdir=LR; f1 [label=<f₁>]; f2 [label=<f₂>]; f3 [label=<f₃>]; f4 [label=<f₄>]; f5 [label=<f₅>]; f6 [label=<f₆>]; f7 [label=<f₇>]; f8 [label=<f₈>]; f9 [label=<f₉>]; f10 [label=<f₁₀>]; f11 [label=<f₁₁>]; f12 [label=<f₁₂>]; f13 [label=<f₁₃>]; f14 [label=<f₁₄>]; f15 [label=<f₁₅>]; f16 [label=<f₁₆>]; subgraph cluster0 { node [style=filled,color=white]; f1 -> f3 -> f5 -> f7 [color=blue]; f2 -> f4 -> f6 -> f8 [color=green]; label = "Band 1"; } subgraph cluster1 { rank = min; node [style=filled]; f9 -> f11 -> f13 -> f15 [color=blue]; f10 -> f12 -> f13 -> f15 [color=green]; f12 -> f14 [style=invis]; f14 -> f16 [color=gold]; label = "Band 2"; } f7 -> l1 [style=dashed, color=blue]; f15 -> l1 [style=dashed, color=blue]; l1[label=<L₁>, shape=box, color=red]; f8 -> l2 [style=dashed, color=green]; f15 -> l2 [style=dashed, color=green]; l2[label=<L₂>, shape=box, color=red]; f16 -> l3 [style=dashed, color=gold] l3[label=<L₃>, shape=box, color=red]; node[shape=none]; edge[style=invis]; t1 [label=<t₁>]; t2 [label=<t₂>]; t3 [label=<t₃>]; t4 [label=<t₄>]; t1 -> t2 -> t3 -> t4; }]

In this case, we initially have two separate lightcurves. However, at
\(t_3\), \(f_{13}\) is associated with both lightcurves in Band 2,
while \(f_{14}\) is associated with neither. Three lightcurves result, as
shown.

It is worth considering the ordering of database insertion at this point. In
particular, consider that either one of \(f_6\) and \(f_{14}\) may be
inserted before the other. After each insertion, the average position of the
runningcatalog entry is recalculated, and this may affect future
associations.

For example, assume that \(f_6\) is inserted before \(f_{14}\). In
this case, the average position of \(f_{2,4,6,10,12}\) is not associated
with \(f_{14}\). However, if \(f_{14}\) were to be inserted first, it
would be compared for association with the average position of
\(f_{2,4,10,12}\). This may well produce a different result!

It is desirable for the database contents to be
independent of the order of insertion, since this is an arbitrary choice which
should not effect scientifically significant outcomes.
However, in the current implementation we simply settle for a
deterministic and repeatable arbitrary choice, by ingesting images in order
of band frequency.

Discussion

It is immediately obvious from the examples given above that, in all but the
simplest cases, there is potential for confusion here. In particular, note
that simply summing the average fluxes of all the lightcurves in the
runningcatalog_flux table in a given band is not an appropriate way to
estimate the total brightness of the sky: this may count individual flux
measurements multiple times.

Further, the way the source association is handled may result in false
detections of transients. In the case of a one-to-many association, for
example, a single bright source can be associated with two sources each of a
fraction of the brightness. This results in two lightcurves, both containing a
(very transient like!) sudden step in flux. A similar outcome can, of course,
also result from a many-to-one association.

There are two potential areas of improvement which should be investigated.

Flux division

In a one-to-many or many-to-one association, rather than simply allocating the
full flux of the “one” measurement to each of the “many” lightcurves, it
could be split such that each was only allotted a portion of the total. In this
way, the total brightness of the sky could be maintained.

The most appropriate division is not obvious. A simple model could allocate
each of \(n\) lightcurves a fraction \(1/n\) of the total flux of the
single measurement. A more elaborate procedure would weight the allocation by
the flux in each of the \(n\) lightcurves, such that brighter sources are
allocated a larger fraction of the flux.

Whatever flux allocation procedure is adopted, however, involves making
assumptions about what fraction should be allocated to each source.
Further, it may also increase the computational complexity in the
database, as lightcurve statistics are no longer simply calculated over
source measurements, but must also take account of fractional allocations.

Smarter association

The current association procedure is purely based on the positions of the
sources and their uncertainties. By incorporating more information about
the sources, ambiguities in association could often be avoided.

For example, consider the case of a many-to-many association involving an
extended source and a point source. It is likely perfectly reasonable to
assume that the measurement of the extended source at time \(t_2\)
should only be associated with the extended source at time \(t_1\),
and similarly for the point source: in this way, the many-to-many
association can be easily reduced to a much simpler case.

Again, though, a number of assumptions go into any procedure like this. In
particular, given that our ultimate aim is to detect transient and
variable sources, we should be wary of any procedure that implicitly
assumes the sky is unchanging. Further, again the issue of database
complexity should be considered: incorporating more logic of this sort is
expensive, in terms of both compute and developer time.

Recommendations

Although it is clear that improvements can and will need to be made to the
procedures adopted, it is not immediately obvious how best to proceed.
Therefore, it is suggested that refinements be deferred until more practical
experience has been obtained.

To that end, we suggest the following:

	Commissioners and scientists working with the lightcurve database, as well
as developers of tools designed to detect transients based upon it, must
familiarize themselves with the issues described above.

	The TKP Lightcurve Archive [http://archive.transientskp.org/] should be
explicit about which measurements have gone into a displayed lightcurve or
other measurement. The figures which accompany this document are easy to
programmatically generate using GraphViz [http://www.graphviz.org/], and
show clearly the heritage of a given lightcurve; we suggest, therefore,
that they or a derivative of them should be shown on the website.

	As more source measurements are collected, statistics can be collected to
demonstrate to what extent the problems anticipated are observed in
real-world use. For example, in the ideal case, the total number of
measurements included in all the lightcurves would be equal to the number
of measurements made on images; in practice, however, the former will be
bigger, since measurements may be counted twice. Observing the
“overcounting fraction” as the database grows will help understand the
nature and severity of the problem.

Detailed logic flow

Herein we give an algorithmic description of how the source association
routines work.

Warning

The following detail is really aimed at developers or particularly
interested users only, and can certainly be skipped on first reading.

We assume that source extraction has been run on input images,
and new measurements have been inserted into the extractedsource table.

Clean any previously created temporary listings.

To ensure a clean start, we first run _empty_temprunningcatalog,
which does what it says on the tin.

Generate a list of candidate runningcatalog-extractedsource associations

Performed by: tkp.db.associations._insert_temprunningcatalog()

(See also: temprunningcatalog table.)

This function generates a temporary table listing possible associations with
previously catalogued sources.

For a given image_id:

	Select all the relevant extractedsource entries, and

	For each extractedsource, create a bunch of table entries detailing
candidate associations with runningcatalog entries which are:
	In the same declination zone as the extractedsource

	Have a weighted mean position for which the RA and DEC are within a box
of half-width radius degrees from the extractedsource.
(This places a hard limit on the maximum association radius).

	Have a weighted mean position within a user-specified De Ruiter radius of
the extractedsource.

	Each of these rows representing a candidate association is populated with all
the values which would represent an update to the corresponding
runningcatalog and runningcatalog_flux entries, if the association is later
determined to be definitive.

Trim the ‘many-to-many’ links to prevent exponentional database growth

Performed by: tkp.db.associations._flag_many_to_many_tempruncat()

Especially if we employ a large De Ruiter radius limit, we may generate a large
number of candidate associations which result in a complex web of possible
lightcurves. We reduce this to a more manageable situation by trimming some of
the ‘weaker’ candidate associations.

First, inspect the temprunningcatalog table:

	Select entries for which the extractedsource is listed more than once.

	Of these entries, select those for which the runcat id is listed more than
once in temprunningcatalog.

	Use this selection to determine the runningcatalog id of minimum De Ruiter
radius, for each extracted source which is part of a many-to-many set.

	Then, using this per-extractedsource minimum DR radius, reapply the above
filters to select multiply-associated entries, and select all entries for
which the runcat id has a larger than minimum DR radius to the
extractedsource.

	Return the runcat-extractedsource identifying pair values for all
non-optimal entries in many-to-many sets.

Finally, use these identifiers to set all these entries as inactive = TRUE.

Or, in pseudo-mathematical terms, tempruncat describes the edges of a graph,
linking nodes (sources) from two spaces (previous runcat entries, newly
extracted entries). (There are no intra-space links).
_flag_many_to_many_tempruncat() trims this graph using the De Ruiter
radius as a ranking metric, to ensure that any connected sub-graph has
multiple nodes in at most one of the two spaces.

Deal with the ‘one-to-many’ runcat-to-extractedsource link sub-graphs

When we observe two new sources in the region of a previous known source,
it is unclear if this is due to increased resolution, or a new source.
To resolve this, we hedge our bets and replace the old single runcat entry
with two new entries - these are identical up to the current ‘fork’.
This is done in tkp.db.associations._insert_1_to_many_runcat(),
and tkp.db.associations._flag_1_to_many_inactive_runcat() then
flags the old entries as ready for deletion.

Having inserted these new runningcatalog entries, we must copy over all
the relevant information to new entries in the associated tables, then delete
the outdated rows; see

	tkp.db.associations._insert_1_to_many_runcat_flux()

	tkp.db.associations._delete_1_to_many_inactive_runcat_flux()

	tkp.db.associations._insert_1_to_many_basepoint_assocxtrsource()

	tkp.db.associations._insert_1_to_many_replacement_assocxtrsource()

	tkp.db.associations._delete_1_to_many_inactive_assocxtrsource()

	tkp.db.associations._insert_1_to_many_assocskyrgn()

	tkp.db.associations._delete_1_to_many_inactive_assocskyrgn()

	tkp.db.associations._insert_1_to_many_newsource()

	tkp.db.associations._delete_1_to_many_inactive_newsource()

Finally, tkp.db.associations._flag_1_to_many_inactive_tempruncat()
flags the one-to-many associations in temprunningcatalog as inactive,
so we can easily distinguish remaining one-to-one associations.

Process all remaining associations

Performed by:

	tkp.db.associations._insert_1_to_1_assoc()

	tkp.db.associations._update_1_to_1_runcat()

	tkp.db.associations._update_1_to_1_runcat_flux()

	tkp.db.associations._insert_1_to_1_runcat_flux()

We now process all the remaining active associations listed in temprunningcatalog.

_insert_1_to_1_assoc() Inserts all the remaining
active links listed in tempruncat, into assocxtrsource. These links all refer
to a still-valid runningcatalog entry from a previous source association run.
(This actually includes those candidate links in ‘many-to-one’ sets, e.g.
sources merged due to a lower-resolution image - hence we set type = 3).

_update_1_to_1_runcat() then performs the corresponding update on the
runningcatalog table, copying across the values calculated during the generation
of temprunningcatalog.

_update_1_to_1_runcat_flux() grabs all the columns relevant to
the runnincatalog_flux entries, from the still active entries in
temprunningcatalog, and updates the runningcatalog_flux table accordingly.

Process remaining extractedsources (those without associations)

Performed by:

	tkp.db.associations._insert_new_runcat()

	tkp.db.associations._insert_new_runcat_flux()

	tkp.db.associations._insert_new_runcat_skyrgn_assocs()

	tkp.db.associations._insert_new_assocxtrsource()

We still need to insert the ‘new’ sources, i.e. those extractions without an
identified association.

_insert_new_runcat() is run first, since the database constraints are
already satisfied (pre-existent xtrsrc and dataset-id). First, we pre-select
those extractedsources which were discovered in the current image. Then we
filter to just those which do not have any associations, by selecting those
extractedsources listed in the image but not in the temprunningcatalog (A
left outer join on xtrsrc where temprunningcatalog.xtrsrc is NULL).

We initialise the averages (position, flux, etc) by pulling in the relevant
values from extractedsource, and the dataset id from the image table.

_insert_new_runcat_flux() performs a similar trick to select the
‘new-source’ extractsources, then cross-matches against the xtrsrc id to
select the new runcat entries. With these in hand it’s easy to insert new
runcat_flux entries, pulling in the relevant id from runningcatalog, band and
stokes from image table, and flux values from extractedsource.

_insert_new_runcat_skyrgn_assocs() performs a positional check
against all known skyregions to see which regions this source lies within, and
inserts links in the assocskyrgn table accordingly.

_insert_new_assocxtrsource() Performs the same routine of grab
‘new-source’ entries, match new runcat entries, as
_insert_new_runcat_flux() - it’s then trival to insert the relevant
entries in assocxtrsource. These are then marked as a type = 4
association.

Determine if a new source is a likely transient

Performed by tkp.db.associations._determine_newsource_previous_limits()

Cleanup

Performed by:

	tkp.db.associations._empty_temprunningcatalog()

	tkp.db.associations._delete_inactive_runcat()

Now that all the new extractions have been dealt with, we take care of some
loose ends.
We delete all rows from the temprunningcatalog table,
and finally delete those runningcatalog entries which we have now superceded,
via a simple inactive = TRUE filter.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	The Pipeline Database

“How-To” notes on common tasks

Recover from disappearing clients

Current (as of April 2014) versions of the MonetDB server do not check for
clients timing out. That is, if a remote client connects to the server and
opens a transaction, then dies without shutting down cleanly for some reason
(power failure, network glitch, ...), the transaction will remain open
indefinitely. MonetDB logs all incremental updates during the transaction.
Eventually, this will both cripple performance and take a huge amount of
space.

Recover by stopping and restarting the database:

$ monetdb stop ${database}
stoping database '${database}'... done

Start it again and the logs will be replayed and then removed:

$ monetdb start ${database}
starting database '${database}'... done

Note that this procedure may take a long time (several hours) to replay a
large volume of logs.

Future versions of MonetDB (unreleased as of April 2014) will include
a fix [http://dev.monetdb.org/hg/MonetDB/rev/2efb07e174e3] for this issue
by enabling SO_KEEPALIVE on the TCP socket.

Create a schema diagram

As shown in the schema documentation.

documentation/devref/database/schema in the TKP tree contains a mini django
projects that can be used to update the schema image. See the README file in
the directory for instructions how to use and set up the django project.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

TKP Package API Reference

Subpackages

	tkp.accessors – Image container classes

	tkp.config – Pipeline Configuration

	tkp.db – Database routines

	tkp.distribute – routines for running on distributed nodes

	tkp.telescope – Telescope specific functionality

	tkp.quality – Data-quality control

	tkp.sourcefinder – source finding and fitting

	tkp.steps – Define logic for each pipeline stage

	tkp.testutil – helper functions for writing tests

	tkp.utility – miscellaneous utility routines

Top-level modules

	tkp.main – Top-level pipeline logic flow

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.accessors – Image container classes

Introduction

The “accessors” system attempts to abstract away the physical image storage
format from the library logic. The higher-level data access routines should
not care whether the data is stored in a CASA table, or a FITS file, or in
some other format: they should be coded against a uniform interface provided
by the appropriate accessor.

An accessor should subclass
tkp.accessors.dataaccessor.DataAccessor, which is an abstract
base class. Accessors must conform to the DataAccessor interface by
defining the relevant attributes (see the attributes listed under
tkp.accessors.dataaccessor.DataAccessor for full details).
An accessor which provides all of these attributes is guaranteed to be usable
with all core TraP functionality.

In some cases, most notably quality control, specialized (eg,
per-telescope) metadata may also be required. A further abstract base class
should be constructed to define the interface required. For example,
tkp.accessors.lofaraccessor.LofarAccessor defines the following
metadata which must be provided for LOFAR quality control:

	antenna_set

	Antenna set in use during observation. String; LBA_INNER, LBA_OUTER,
LBA_SPARSE, LBA or HBA

	ncore

	Number of core stations in use during observations constituting this image.
Integer.

	nremote

	Number of remote stations in use during observations constituting this
image. Integer.

	nintl

	Number of international stations in use during observations constituting
this image. Integer.

	subbandwidth

	Width of a subband, in Hz.

	subbands

	Number of subbands.

API Documentation

	tkp.accessors API reference
	tkp.accessors – Base data accessor utilities

	tkp.accessors.detection – File type detection

	Data Accessor Variants
	Basic data accessors

	LOFAR-specific data accessors

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.accessors – Image container classes

tkp.accessors API reference

tkp.accessors – Base data accessor utilities

Data accessors.

These can be used to populate ImageData objects based on some data source
(FITS file, array in memory... etc).

	
tkp.accessors.open(path, *args, **kwargs)[source]

	Returns an accessor object (if available) for the file or directory ‘path’.

We try all the possible accessors in order from most specific to least
specific. That is, if possible, we prefer an accessor providing
LofarAccessor to one providing DataAccessor, but we accept the latter if
that’s the only possible match.

Will raise an exception if something went wrong or no matching accessor
class is found.

	
tkp.accessors.sourcefinder_image_from_accessor(image, **args)[source]

	Create a source finder ImageData object from an image ‘accessor’

	Parameters:	image (-) – FITS/AIPS/HDF5 image available through
an accessor.

	Returns:	a source finder image.

	Return type:	(tkp.sourcefinder.image.ImageData)

	
tkp.accessors.writefits(data, filename, header={})[source]

	Dump a NumPy array to a FITS file.

Key/value pairs for the FITS header can be supplied in the optional
header argument as a dictionary.

tkp.accessors.detection – File type detection

	
class tkp.accessors.detection.FitsTest(accessor, test)

	
	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
accessor

	Alias for field number 0

	
test

	Alias for field number 1

	
tkp.accessors.detection.casa_detect(filename)[source]

	Detect which telescope produced CASA data, return corresponding accessor.

Checks for known CASA table types where we expect additional metadata.
If the telescope is unknown we return nothing.

	
tkp.accessors.detection.detect(filename)[source]

	returns the accessor class that should be used to process filename

	
tkp.accessors.detection.fits_detect(filename)[source]

	Detect which telescope produced FITS data, return corresponding accessor.

Checks for known FITS image types where we expect additional metadata.
If the telescope is unknown we default to a regular FitsImage.

	
tkp.accessors.detection.iscasa(filename)[source]

	returns True if filename is a lofar casa directory

	
tkp.accessors.detection.isfits(filename)[source]

	returns True if filename is a fits file

	
tkp.accessors.detection.islofarhdf5(filename)[source]

	returns True if filename is a hdf5 container

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.accessors – Image container classes

Data Accessor Variants

Basic data accessors

	
class tkp.accessors.dataaccessor.DataAccessor[source]

	Base class for accessors used with
tkp.sourcefinder.image.ImageData.

Data accessors provide a uniform way for the ImageData class (ie,
generic image representation) to access the various ways in which
images may be stored (FITS files, arrays in memory, potentially HDF5,
etc).

This class cannot be instantiated directly, but should be subclassed
and the abstract properties provided. Note that all abstract
properties are required to provide a valid accessor.

Additional properties may also be provided by subclasses. However,
TraP components are required to degrade gracefully in the absence of
this optional properties.

The required attributes are as follows:

	
beam

	tuple – Restoring beam. Tuple of three floats:
semi-major axis (in pixels), semi-minor axis (pixels)
and position angle (radians).

	
centre_ra

	float – Right ascension at the central pixel of the image.
Units of J2000 decimal degrees.

	
centre_decl

	float – Declination at the central pixel of the image.
Units of J2000 decimal degrees.

	
data

	numpy.ndarray – Two dimensional numpy.ndarray of floating point
pixel values.
(TODO: Definitive statement on orientation/transposing.)

	
freq_bw

	float – The frequency bandwidth of this image in Hz.

	
freq_eff

	float – Effective frequency of the image in Hz.
That is, the mean frequency of all the visibility data which
comprises this image.

	
pixelsize

	tuple – (x, y) tuple representing the size of a pixel
along each axis in units of degrees.

	
tau_time

	float – Total time on sky in seconds.

	
taustart_ts

	float – Timestamp of the first integration which
constitutes part of this image. MJD in seconds.

	
url

	string – A (string) URL representing the location of the image
at time of processing.

	
wcs

	tkp.utility.coordinates.WCS – An instance of
tkp.utility.coordinates.WCS,
describing the mapping from data pixels to sky-coordinates.

The class also provides some common functionality:
static methods used for parsing datafiles, and an ‘extract_metadata’
function which provides key info in a simple dict format.

	
static degrees2pixels(bmaj, bmin, bpa, deltax, deltay)[source]

	Convert beam in degrees to beam in pixels and radians.
For example Fits beam parameters are in degrees.

	Parameters:	
	bmaj (-) – Beam major axis in degrees

	bmin (-) – Beam minor axis in degrees

	bpa (-) – Beam position angle in degrees

	deltax (-) – Pixel size along the x axis in degrees

	deltay (-) – Pixel size along the y axis in degrees

	Returns:	Beam semi-major axis in pixels
- semimin: Beam semi-minor axis in pixels
- theta: Beam position angle in radians

	Return type:	
	semimaj

	
extract_metadata()[source]

	Massage the class attributes into a flat dictionary with
database-friendly values.

While rather tedious, this is easy to serialize and store separately
to the actual image data.

May be extended by subclasses to return additional data.

	
parse_pixelsize()[source]

	

	Returns:	pixel size along the x axis in degrees
- deltay: pixel size along the x axis in degrees

	Return type:	
	deltax

The following acessors are derived from the basic DataAccessor class:

	
class tkp.accessors.fitsimage.FitsImage

	Generic FITS data access.

	
class tkp.accessors.casaimage.CasaImage

	Generic CASA image access.

	
class tkp.accessors.kat7casaimage.Kat7CasaImage

	KAT-7 specific CASA image access.

LOFAR-specific data accessors

	
class tkp.accessors.lofaraccessor.LofarAccessor[source]

	

The following accessors are derived from the generic LofarAccessor:

	
class tkp.accessors.lofarfitsimage.LofarFitsImage

	LOFAR FITS access.

	
class tkp.accessors.lofarcasaimage.LofarCasaImage

	LOFAR CASA image access.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.config – Pipeline Configuration

Outline

The tkp.config folder contains the job configuration file templates, and
code for handling config files.

API

	
tkp.config.get_database_config(config_passed=None, apply=False)[source]

	Determine database config and (optionally) use to set up the Database.

Determines a database configuration using the settings
defined in a dict (if supplied) and possibly overridden by
environment variables.
The config resulting from the combination of defaults, supplied dict,
and environment variables is returned as a dict. If apply==True,
the Database singleton is configured using these resulting settings.

The following environment variables are recognized, and take priority:

	TKP_DBENGINE

	TKP_DBNAME

	TKP_DBUSER

	TKP_DBPASSWORD

	TKP_DBHOST

	TKP_DBPORT

	Parameters:	
	config_passed – Dict of db settings.
Relevant keys: (engine, database, user, password, host, port,
passphrase)

	apply – apply settings (configure db connection) or not

	Returns:	Dict containing the resulting combined settings
(resulting from defaults, config_passed and possibly environment
variables.)

	
tkp.config.initialize_pipeline_config(pipe_cfg_file, job_name)[source]

	Initializes the default variables and loads the ConfigParser file.

Sets defaults for start_time, job_name and cwd; these can then be used
via variable substitution in other config values.

tkp.config.parse – Magic ConfigParser to dict functionality

Utilities for loading parameters from config files, with automatic type
conversion.

	
tkp.config.parse.loads_timestamp_w_microseconds(dt_str)[source]

	Loads and returns timestamp with microsecond precission

	
tkp.config.parse.parse_to_dict(config)[source]

	Loads the ConfigParser object as a nested dictionary.

Automatically converts strings representing ints and floats to their
respective types, through the magic of ast.literal_eval.
This functionality is extensible via the loads_methods list.
Each loads (load string) method is tested in turn to see if it
throws an exception. If all throw, we assume the value is meant to be
string.

Any values that you don’t want to be converted should simply be
surrounded with quote marks in the parset - then ast.literal_eval
knows to load it as a string.

	Parameters:	config – A ConfigParser object.

	Returns:	Nested dict {sections -> keys -> values } representing parsed params.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.db – Database routines

Modules from the tkp.db package.

	Introduction
	Database

	General: dataset, image, extracted sources

	Other

	tkp.db – TKP database root package

	tkp.db.associations – source association

	tkp.db.configstore – Key-value record of job configuration params

	tkp.db.consistency – Database integrity checking

	tkp.db.database – Database connection interface

	tkp.db.dump – Dump database backup to file

	tkp.db.general – general database functions

	tkp.db.generic – generic data-query generation functions

	tkp.db.orm – Object Relational Model interface
	Usage

	Creating new objects

	Updating objects

	Assigning objects to a table row on creation

	tkp.db.monitoringlist – handling of monitoring sources

	tkp.db.nulldetections – handling of null detections

	tkp.db.quality – Routines handling the ‘rejectreason’ table.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

Introduction

The database subpackage consists of several modules dedicated to their tasks.
The main modules are:

	database

	general

Database

The database module provides a single class,
tkp.db.database.Database, which takes care of the connection to
the database. It provides a connection and a cursor object to the
database, as well as a few shortcut utility functions for executing SQL
queries.

The most typical use for the tkp.db.database.Database class is
something as follows, assuming the default login settings (taken from the tkp
configuration file) are appropriate:

from tkp.db import execute as execute

cursor = execute(<sql query>, <args>)
results = cursor.fetchall()

For more details, see the database section.

General: dataset, image, extracted sources

The dataset module provides a miniature object relation mapper (ORM) interface
to the database. This interface is not fully complete, but it does allow one to
treat several database tables and their data as Python classes and instances.
The mapped tables and their classes are:

	datasets: DataSet

	images: Image

	extractedsource: ExtractedSource

Each of these classes inherits from the DBOject class. This class provides
a few general methods to interface with the underlying database.
A typical usage example could look like this:

db_image = DBImage(id=image_id, database=database)
db_image.insert_extracted_sources(results,'blind')

where database is the database opened above, and image_id points to an
existing row in the images table. results is obtained from the source finder,
and are stored in the database per image into extractedsource. In case of
a new image, one would leave out the id keyword in the first line, and
instead supply a data keyword argument that is a dictionary with the
necessary information (again, see the database documentation).

Currently, the usage described above is sometimes used in the unittest code. In the pipeline
code we try to restrict the usage of the orm, since it can get quite complex.
Inserting the extracted sources for a particular image looks like this:

from tkp.db import general as dbgen
dbgen.insert_extracted_sources(image.id, results.sources, 'blind')

where image.id is the id of the image to which the sources belong to.

Other

The remaining modules contain the actual SQL queries used for the various database
routines, such as source insertion, source association, keeping track of the
monitoring sources and null detections, etc.
All functions and queries within each function call follow a fixed pattern:
functions inherit the connection object, and each query is executed
within a try-except block in case the database raises an error.
There is some overhead in the sense that a cursor is created
for each function call, but other than that, the routines provide
the fastest and most direct interaction with the database.

Several functions are called from methods of the classes in the dataset module,
to provide a hopefully clearer interface, but can of course be called directly
as well. Finally, a number of functions are private to the module, and their
name is therefore preceded with an underscore. These functions tend to be
called from another funtion within the same module, but may be called from
another module as well.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db – TKP database root package

	
tkp.db.commit()[source]

	A generic wrapper to commit a query transaction

It saves the changes involved by a transaction

	
tkp.db.connect()[source]

	A generic wrapper to connect to the configured database

	
tkp.db.connection()[source]

	A generic wrapper to create a connection to the database if
it does not exist

	
tkp.db.execute(query, parameters={}, commit=False)[source]

	A generic wrapper for doing any query to the database

	Parameters:	
	query – the query string

	parameters – The query parameters. These will be converted and escaped.

	commit – should a commit be performed afterwards, boolean

	Returns:	a database cursor object

	
tkp.db.rollback()[source]

	A generic wrapper to rollback a query transaction

Undo changes involved by a transaction that have not been saved

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.associations – source association

A collection of back end subroutines (mostly SQL queries), In this module we
deal with source association.

	
tkp.db.associations._check_meridian_wrap(image_id)[source]

	Checks whether an image is close to the meridian ra = 0 or ra = 360

When so, the association query needs to be rewritten to take into account
sources across the 0/360 meridian.

The query returns:

	q_across: true, if the extraction region of the image crosses

	the ra=0/360 border

	ra_min: the min value of the ra-between for the normal case,

	when the image is outside the ra=0/360 meridian,
otherwise NULL

	ra_max: the max value of the ra-between for the normal case,

	when the image is outside the ra=0/360 meridian,
otherwise NULL

ra_min1/max1 and ra_min2/max2 are the values which may be used
for the case of a cross-meridian image.
F.ex. using a search radius of 5 degrees, and when a source is at
359.99 the ra-betweens 1 and 2 are :
... AND (ra BETWEEN ra_min1 AND ra_max1 OR ra BETWEEN ra_min2 AND ra_max2) ...
... AND (ra BETWEEN 354.99 AND 360 OR ra BETWEEN 0 AND 4.99) ...

	ra_min1: the min value of the high-end ra-between, if the

	extraction region of the image crosses the ra=0/360 border,
otherwise NULL

	ra_max1: the min value of the high-end ra-between, if the

	extraction region of the image crosses the ra=0/360 border,
otherwise NULL

ra_min2, ra_max2: As ra_min1/max1, but for the low-end ra values.

These values are not being used in the cross-meridian association query,
but are merely reported to notice the search area.
The cross-meridian association query uses the cartesian dot product,
to get the search area.

	
tkp.db.associations._delete_1_to_many_inactive_assocskyrgn()[source]

	Delete the assocskyrgn links of the old runcat

Since we replaced this runcat.id with multiple new ones, we now
delete the old links.

	
tkp.db.associations._delete_1_to_many_inactive_assocxtrsource()[source]

	Delete the association pairs of the old runcat from assocxtrsource

NOTE: It might sound confusing, but those are not qualified
as inactive in tempruncat (read below).
Since we replaced this runcat.id with multiple new one, we first
flag it as inactive, after which we delete it from the runningcatalog

The subselect selects those valid “old” runcat ids (i.e.,
the ones that were not set to inactive for the many-to-many associations).

	NOTE: We do not have to flag these rows as inactive,

	no furthr processing depends on these in the assoc run

	
tkp.db.associations._delete_1_to_many_inactive_newsource()[source]

	Delete the newsource sources of the old runcat

Since we replaced this runcat.id with multiple new ones, we now
delete the old one.

	
tkp.db.associations._delete_1_to_many_inactive_runcat_flux()[source]

	Flag the old runcat ids in the runningcatalog to inactive

Since we replaced this runcat.id with multiple new one, we first
flag it as inactive, after which we delete it from the runningcatalog

	
tkp.db.associations._delete_bad_blind_extractions(image_id)[source]

	Remove blind extractions centred outside designated extract region.

These occur sometimes due to highly elliptical fits on noisy data,
creating a best fit centred outside the original pixel region.
The source-extraction code has been modified to (probably) prevent this,
but we check for them anyway.

NB. We currently only delete blind extractions.
We expect that occasionally forced fits to sources just inside the extraction
radius might converge just outside, but these should be restricted to a
very small additional margin. By not deleting these edge cases,
the data allows us to construct proper lightcurves, and (I think) does
not contribute to their weighted mean positions (so sources cannot ‘migrate’
across the border).
TODO(TS): Check this.

Only extractions from the specified image are checked for deletion.

	Returns:	Number of extractedsource rows deleted.

	
tkp.db.associations._delete_inactive_runcat()[source]

	Delete the one-to-many associations from temprunningcatalog,
and delete the inactive rows from runningcatalog.

After the one-to-many associations have been processed,
they can be deleted from the temporary table and
the runningcatalog.

	
tkp.db.associations._determine_newsource_previous_limits(image_id, new_source_sigma_margin)[source]

	Determines which new-runcat sources are also probably transient.

Looks up previous images relevant to this source-position, using the
following criteria - images must:

	overlap the new-source position, according to the skyregion
information;

	be in the same dataset;

	be in the same frequency band;

	have an earlier timestamp than the current image;

	have not been rejected.

For those images we calculate the per-previous-image detection-thresholds,
which are defined as follows.

A new source is ‘possibly transient’ (type 0) if it
passes the following tests:

	Was not detected in a skyregion being surveyed for the first time.

	Has a flux-value such that:

flux > MIN_OVER_I [(rms_min_I*(det_I + new_source_sigma_margin)]

(where I indexes the images)
i.e. if it was a steady-source, it should have been already detected if
it was in the low-RMS area of the previous image with best detection
threshold, even allowing for noise fluctuations.

Furthermore, a new source is ‘likely transient’ (type 1) if it is additionally
bright enough that, if it were a steady source, it should have been detected
even if it was in the high-RMS area of the aforementioned ‘low rms_min’
image, i.e.

flux > (rms_max_I*(det_I + new_source_sigma_margin))

Note that, once we have located the image with best ‘low rms threshold’,
we then use that image to also generate the ‘high rms threshold’.
Strictly speaking, this is non-optimal - we should run a fresh search
against all images to find the best ‘high rms threshold’. However, I’m
working on the assumption that most of
the time the image with best low-threshold will also have best
high-threshold, and even when that is not the case we won’t lose too much
accuracy. The benefits of this assumption are simplicity, and possibly
faster performance, but this might need to be re-examined in future,
especially if we start ingesting images of wildly differing sizes and
noise non-uniformity characteristics (e.g. single pointings vs mosaics) etc.

We use peak flux (f_peak) as the flux value here, since that is likely
to be the deciding factor in whether a source gets blindly extracted or not.
(NB This is a hunch, rigorous investigation welcome.)

	
tkp.db.associations._empty_temprunningcatalog()[source]

	Initialize the temporary storage table

Initialize the temporary table temprunningcatalog which contains
the current observed sources.

	
tkp.db.associations._flag_1_to_many_inactive_runcat()[source]

	Flag the old runcat ids in the runningcatalog to inactive

We do not delete them yet, because we still need to clear up all the
superseded entries in assocskyrgn, etc.

	
tkp.db.associations._flag_1_to_many_inactive_tempruncat()[source]

	Flag the one-to-many associations from temprunningcatalog.

(Since we are done processing them, now.)

We do not delete them yet- if we did,
we would not be able to cross-match extractedsources to determine
which sources did not have a match in temprunningcatalog (‘new’ sources).

	
tkp.db.associations._flag_many_to_many_tempruncat()[source]

	Select the many-to-many association pairs in temprunningcatalog.

By flagging the many-to-many associations, we reduce the
processing to one-to-many and many-to-one (identical to one-to-one)
relationships

	
tkp.db.associations._insert_1_to_1_assoc()[source]

	Insert remaining associations from temprunningcatalog into assocxtrsource.

We also calculate the variability indices at the timestamp of the
the current image.

	
tkp.db.associations._insert_1_to_1_runcat_flux()[source]

	Insert the fluxes in runningcatalog_flux of a new band
for an existing runcat source.

If the runcat, band, stokes entry does not exist (yet) in runcat_flux,
we need to insert the new values from tempruncat.
This might be the case if a source has been observed at other frequencies,
but not in the current band, so there does not exist an entry
for this band.

	
tkp.db.associations._insert_1_to_many_assocskyrgn()[source]

	Copy skyregion associations from old runcat entries for new one-to-many
runningcatalog entries.

	
tkp.db.associations._insert_1_to_many_basepoint_assocxtrsource()[source]

	Insert ‘base points’ for one-to-many associations

Before continuing, we have to insert the ‘base points’ of the associations,
i.e. the links between the new runningcatalog entries
and their associated (new) extractedsources.

We also calculate the variability indices at the timestamp of the
the current image.

	
tkp.db.associations._insert_1_to_many_newsource()[source]

	Update the runcat id for the one-to-many associations,
and delete the newsource entries of the old runcat id
(the new ones have been added earlier).

In this case, new entries in the runningcatalog and runningcatalog_flux
were already added (for every extractedsource one), which will replace
the existing ones in the runningcatalog.
Therefore, we have to update the references to these new ids as well.

	
tkp.db.associations._insert_1_to_many_replacement_assocxtrsource()[source]

	Insert links into the association table between the new runcat
entries and the old extractedsources.
(New to New (‘basepoint’) links have been added earlier).

In this case, new entries in the runningcatalog and runningcatalog_flux
were already added (for every extractedsource one), which will replace
the existing ones in the runningcatalog.
Therefore, we have to update the references to these new ids as well.
So, we will append to assocxtrsource and delete the entries from
runningcatalog_flux.

NOTE:
1. We do not update the distance_arcsec and r values of the pairs.

TODO:
1. Why not?

	
tkp.db.associations._insert_1_to_many_runcat()[source]

	Insert the extracted sources that belong to one-to-many
associations in the runningcatalog.

Since for the one-to-many associations (i.e. one runcat source
associated with multiple extracted sources) we cannot a priori
decide which counterpart pair is the correct one, or whether all
are correct (in the case of a higher-resolution image),
all extracted sources are added as a new source to
the runningcatalog, and they will replace the (old; lower resolution)
runcat source of the association.

As a consequence of this, the resolution of the runningcatalog
is increasing over time.

	
tkp.db.associations._insert_1_to_many_runcat_flux()[source]

	Insert the fluxes of the extracted sources that belong
to a one-to-many association in the runningcatalog.

Analogous to the runningcatalog, extracted source properties
are added to the runningcatalog_flux table.

	
tkp.db.associations._insert_new_assocxtrsource(image_id)[source]

	Insert new associations for previously unknown sources.

	
tkp.db.associations._insert_new_runcat(image_id)[source]

	Insert previously unknown sources into the runningcatalog table.

Extractedsources for which no counterpart was found in the
runningcatalog (i.e. no pair exists in tempruncat),
will be added as a new source to the assocxtrsource,
runningcatalog and runningcatalog_flux tables.

	
tkp.db.associations._insert_new_runcat_flux(image_id)[source]

	Insert previously unknown sources into the runningcatalog_flux table.

(i.e. those without any previous runcat-counterpart)

	
tkp.db.associations._insert_new_runcat_skyrgn_assocs(image_id)[source]

	Process newly created entries from the runningcatalog,
determine which skyregions they lie within.

Upon creation of a new runningcatalog entry,
we need to determine which previous fields of view (skyrgns)
we expect to see it in.
This knowledge helps us to make accurate guesses as whether a new
source is really transient or simply being surveyed for the first time.

	
tkp.db.associations._insert_temprunningcatalog(image_id, deRuiter_r, beamwidths_limit, meridian_wrap)[source]

	Select matched sources

Here we select the extractedsource that have a positional match
with the sources in the running catalogue table (runningcatalog).
Those sources which do have a potential match, will be inserted into the
temporary running catalogue table (temprunningcatalog).

See also:
http://docs.transientskp.org/tkp/database/schema.html#temprunningcatalog

Explanation of some column name prefixes/suffixes used in the SQL query:

	avg_X := average of X

	avg_X_sq := average of X^2

	avg_weight_X := average of weight of X, i.e. mean(1/error^2)

	
	avg_weighted_X := average of weighted X,

	i.e. mean(X/error^2)

	
	avg_weighted_X_sq := average of weighted X^2,

	i.e. mean(X^2/error^2)

This result set might contain multiple associations (1-n,n-1)
for a single known source in runningcatalog.

The n-1 assocs will be treated similar as n 1-1 assocs.

NOTE: Beware of the extra condition on x0.image in the WHERE clause,
preventing the query to grow exponentially in response time

	
tkp.db.associations._update_1_to_1_runcat()[source]

	Update the running catalog with the values in temprunningcatalog

	
tkp.db.associations._update_1_to_1_runcat_flux()[source]

	Updates the fluxes in runningcatalog_flux of an existing band
for an existing runcat source.

If the runcat, band, stokes entry does exist in runcat_flux,
it will be updated with the values from tempruncat.

	
tkp.db.associations._update_ff_runcat_extractedsource()[source]

	We are about to delete the runcats that are inactivated, and
therefore have to set the ff_runcat reference in extractedsource to NULL.

	
tkp.db.associations.associate_extracted_sources(image_id, deRuiter_r, beamwidths_limit=1, new_source_sigma_margin=3)[source]

	Associate extracted sources with sources detected in the running
catalog.

See the “developer’s reference” section of the docs for a step-by-step
breakdown of the logic encapsulated here.

The dimensionless distance between two sources is given by the
“De Ruiter radius”, see Chapters 2 & 3 of Scheers’ thesis.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.configstore – Key-value record of job configuration params

store and retrieve pipeline settings to/from database

	
tkp.db.configstore.fetch_config(dataset_id)[source]

	Retrieve the stored config for given dataset id

	Returns:	nested dict [section][key] -> [value]

	
tkp.db.configstore.store_config(config, dataset_id)[source]

	Store a config defined in d into the database.

	Parameters:	config (dict [http://docs.python.org/library/stdtypes.html#dict]) – nested dict containing config, [section][key] -> [value]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.consistency – Database integrity checking

check database for consistency

	
tkp.db.consistency.check()[source]

	Checks for any inconsistent values in tables.

Returns False if any inconsistency is found, otherwise True.

	
tkp.db.consistency.isconsistent(query)[source]

	Counting rows should return 0, otherwise database is in an
inconsistent state.

If the database is consistent we return True, otherwise False.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.database – Database connection interface

	
class tkp.db.database.DBExceptions(engine)[source]

	This provides an engine-agnostic wrapper around the exceptions that can
the thrown by the database layer: we can refer to eg
DBExcetions(engine).Error rather than <engine specific module>.Error.

We handle both the PEP-0249 exceptions as provided by the DB engine, and
add our own as necessary.

	
class tkp.db.database.Database(**kwargs)[source]

	An object representing a database connection.

	
close()[source]

	close the connection if open

	
connect()[source]

	connect to the configured database

	
connection

	The database connection, will be created if it doesn’t exists.

This is a property to be backwards compatible with the rest of TKP.

	Returns:	a database connection

	
vacuum(table)[source]

	Force a vacuum on a table, which removes dead rows. (Postgres only)

Normally the auto vacuum process does this for you, but in some cases
(for example when the table receives many insert and deletes) manual
vacuuming is necessary for performance reasons.

	Parameters:	table – name of the table in the database you want to vacuum

	
tkp.db.database.sanitize_db_inputs(params)[source]

	Replace values in params with alternatives suitable for database insertion.

That includes:

	Convert numpy.floating types into Python floats;

	Convert infs into the string “Infinity”.

	Parameters:	params (dict/list/tuple) – (Potentially) dirty database inputs

	Returns:	cleaned – Sanitized database inputs

	Return type:	dict/list/tuple

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.dump – Dump database backup to file

Dump database schema and content

	
tkp.db.dump.dump_db(engine, hostname, port, dbname, dbuser, dbpass, output)[source]

	Dumps a database

	Parameters:	
	engine – the name of the database system (either monetdb or postgresql)

	hostname – the hostname of the database

	port – the port of the database server

	dbname – the database name to be dumped

	dbuser – the user authorised to do the dump

	dbpass – the pw for the user

	output – the output file to which the dump is written

	
tkp.db.dump.dump_monetdb(hostname, port, dbname, dbuser, dbpass, output_filename)[source]

	Dumps a MonetDB database in specified output file

	
tkp.db.dump.dump_pg(hostname, port, dbname, dbuser, dbpass, output_filename)[source]

	Dumps a PostgreSQL database in specified output file

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.general – general database functions

A collection of back end subroutines (mostly SQL queries).

In this module we collect together various routines
that don’t fit into a more specific collection.

	
tkp.db.general.insert_dataset(description)[source]

	Insert dataset with description as given by argument.

DB function insertDataset() sets the necessary default values.

	
tkp.db.general.insert_extracted_sources(image_id, results, extract_type, ff_runcat_ids=None, ff_monitor_ids=None)[source]

	Insert all detections from sourcefinder into the extractedsource table.

Besides the source properties from sourcefinder, we calculate additional
attributes that are increase performance in other tasks.

The strict sequence from results (the sourcefinder detections) is given below.
Note the units between sourcefinder and database.
(0) ra [deg], (1) dec [deg],
(2) ra_fit_err [deg], (3) decl_fit_err [deg],
(4) peak_flux [Jy], (5) peak_flux_err [Jy],
(6) int_flux [Jy], (7) int_flux_err [Jy],
(8) significance detection level,
(9) beam major width (arcsec), (10) - minor width (arcsec), (11) - parallactic angle [deg],
(12) ew_sys_err [arcsec], (13) ns_sys_err [arcsec],
(14) error_radius [arcsec]
(15) gaussian fit (bool)
(16), (17) chisq, reduced_chisq (float)

ra_fit_err and decl_fit_err are the 1-sigma errors from the gaussian fit,
in degrees. Note that for a source located towards the poles the ra_fit_err
increases with absolute declination.
error_radius is a pessimistic on-sky error estimate in arcsec.
ew_sys_err and ns_sys_err represent the telescope dependent systematic errors
and are in arcsec.
An on-sky error (declination independent, and used in de ruiter calculations)
is then:
uncertainty_ew^2 = ew_sys_err^2 + error_radius^2
uncertainty_ns^2 = ns_sys_err^2 + error_radius^2
The units of uncertainty_ew and uncertainty_ns are in degrees.
The error on RA is given by ra_err. For a source with an RA of ra and an error
of ra_err, its RA lies in the range [ra-ra_err, ra+ra_err].
ra_err^2 = ra_fit_err^2 + [alpha_inflate(ew_sys_err,decl)]^2
decl_err^2 = decl_fit_err^2 + ns_sys_err^2.
The units of ra_err and decl_err are in degrees.
Here alpha_inflate() is the RA inflation function, it converts an
angular on-sky distance to a ra distance at given declination.

Input argument “extract” tells whether the source detections originate from:
‘blind’: blind source extraction
‘ff_nd’: from forced fits at null detection locations
‘ff_ms’: from forced fits at monitoringlist positions

Input argument ff_runcat is not empty in the case of forced fits from
null detections. It contains the runningcatalog ids from which the
source positions were derived for the forced fits. In that case the
runcat ids will be inserted into the extractedsource table as well,
to simplify further null-detection processing.
For blind extractions this list is empty (None).

For all extracted sources additional parameters are calculated,
and appended to the sourcefinder data. Appended and converted are:

	the image id to which the extracted sources belong to

	the zone in which an extracted source falls is calculated, based
on its declination. We adopt a zoneheight of 1 degree, so
the floor of the declination represents the zone.

	the positional errors are converted from degrees to arcsecs

	the Cartesian coordinates of the source position

	ra * cos(radians(decl)), this is very often being used in
source-distance calculations

	
tkp.db.general.insert_image(dataset, freq_eff, freq_bw, taustart_ts, tau_time, beam_smaj_pix, beam_smin_pix, beam_pa_rad, deltax, deltay, url, centre_ra, centre_decl, xtr_radius, rms_qc, rms_min, rms_max, detection_thresh, analysis_thresh)[source]

	Insert an image for a given dataset.

	Parameters:	
	dataset (int [http://docs.python.org/library/functions.html#int]) – ID of parent dataset.

	freq_eff – See Image table definitions.

	freq_bw – See Image table definitions.

	taustart_ts – See Image table definitions.

	taus_time – See Image table definitions.

	beam_smaj_pix (float [http://docs.python.org/library/functions.html#float]) – Restoring beam semimajor axis length in pixels.
(Converted to degrees before storing to database).

	beam_smin_pix (float [http://docs.python.org/library/functions.html#float]) – Restoring beam semiminor axis length in pixels.
(Converted to degrees before storing to database).

	beam_pa_rad (float [http://docs.python.org/library/functions.html#float]) – Restoring beam parallactic angle in radians.
(Converted to degrees before storing to database).

	deltax (float [http://docs.python.org/library/functions.html#float]) – Degrees per pixel increment in x-direction.

	deltay (float [http://docs.python.org/library/functions.html#float]) – Degrees per pixel increment in y-direction.

	centre_ra (float [http://docs.python.org/library/functions.html#float]) – Image central RA co-ord, in degrees.

	centre_decl (float [http://docs.python.org/library/functions.html#float]) – Image central Declination co-ord, in degrees.

	xtr_radius (float [http://docs.python.org/library/functions.html#float]) – Radius in degrees from field centre that will be used
for source extraction.

	
tkp.db.general.insert_monitor_positions(dataset_id, positions)[source]

	Add entries to the monitor table.

	Parameters:	
	dataset_id (int [http://docs.python.org/library/functions.html#int]) – Positions will only be monitored when processing this
dataset.

	positions (list of tuples) – List of (RA, decl) tuples in decimal degrees.

	
tkp.db.general.lightcurve(xtrsrcid)[source]

	Obtain a light curve for a specific extractedsource

	Parameters:	xtrsrcid (int [http://docs.python.org/library/functions.html#int]) – the source identifier that corresponds to a point on
the light curve. Note that the point does not have to be the start
(first) point of the light curve.

	Returns:	a list of tuples, each containing:
- observation start time as a datetime.datetime object
- integration time (float)
- integrated flux (float)
- integrated flux error (float)
- database ID of this particular source
- frequency band ID
- stokes

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
tkp.db.general.update_dataset_process_end_ts(dataset_id)[source]

	Update dataset start-of-processing timestamp.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.generic – generic data-query generation functions

A collection of generic functions used to generate SQL queries
and return data in an easy to use format such as dictionaries.

	
tkp.db.generic.columns_from_table(table, keywords=None, alias=None, where=None, order=None)[source]

	Obtain specific column (keywords) values from ‘table’, with
kwargs limitations.

A very simple helper function, that builds an SQL query to obtain
the specified columns from ‘table’, and then executes that
query. Optionally, the WHERE clause can be specified using the
where dictionary. It returns a list of a
dict (with the originally supplied keywords as dictionary keys),
which can be empty.

Example

>>> columns_from_table('image', keywords=['taustart_ts', 'tau_time', 'freq_eff', 'freq_bw'], where={'imageid': 1})
 [{'freq_eff': 133984375.0, 'taustart_ts': datetime.datetime(2010, 10, 9, 9, 4, 2), 'tau_time': 14400.0, 'freq_bw': 1953125.0}]

This builds the SQL query:
“SELECT taustart_ts, tau_time, freq_eff, freq_bw FROM image WHERE imageid=1”

This function is implemented mainly to abstract and hide the SQL
functionality from the Python interface.

	Parameters:	
	conn – database connection object

	table (string [http://docs.python.org/library/string.html#module-string]) – database table name

Kwargs:

keywords (list): column names to select from the table. None indicates all (‘*’)

	where (dict): where clause for the query, specified as a set

	of ‘key = value’ comparisons. Comparisons are and-ed
together. Obviously, only ‘is equal’ comparisons are
possible.

	alias (dict): Chosen aliases for the column names,

	used when constructing the returned list of dictionaries

order (string): ORDER BY key.

	Returns:	list of dicts. Each dict contains the given keywords,
or all if keywords=None. Each element of the list
corresponds to a table row.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
tkp.db.generic.convert_db_rows_to_dicts(results, cursor_description, alias_map=None)[source]

	Takes a list of rows as returned by cursor.fetchall(),
converts to a list of dictionaries.

	
tkp.db.generic.get_db_rows_as_dicts(cursor, alias_map=None)[source]

	Grab results of cursor.fetchall(), convert to a list of dictionaries.

	
tkp.db.generic.set_columns_for_table(table, data=None, where=None)[source]

	Set specific columns (keywords) for ‘table’, with ‘where’
limitations.

A simple helper function, that builds an SQL query to update the
specified columns given by data for ‘table’, and then executes
that query. Optionally, the WHERE clause can be specified using
the ‘where’ dictionary.

The data argument is a dictionary with the names and corresponding
values of the columns that need to be updated.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.orm – Object Relational Model interface

This module contains lightweight container objects that corresponds
to a dataset, image or extracted source in the database; it is actually a
mini Object Relation Mapper (ORM). The correspondence between the object
and table row is matched through the private _id attributes.

Each dataset contains several database Images; each Image contains a
number of ExtractedSources. The database Images correspond to the
images table in the database, not to sourcefinder images or actual
image data files on disk (this distinction is important; while there
are certainly parts in common, several are not).

The current setup is done in large part to keep the database and
sourcefinder (and other parts of the TKP package) separate; tightly
integrated database tables/sourcefinder images/disk files make it more
difficult to improve the code or distribute parts separately.

Usage

In practice, a DataSet object is created, and separate Images are
created referencing that DataSet() instance; ids are automatically
assigned where necessary (i.e., on creation of a new entry (row) in
the database).

Objects can also be created using an existing id; data is then taken
from the corresponding table row in the database.

Creating new objects

The following code is an usage example, but should not be used as a
doc test (since the database value can differ, and thus the test would
fail):

database sets up and holds the connection to the actual database
>>> database = tkp.db.database.Database()

Each object type takes a data dictionary on creation, which for newly objects
has some required keys (& values). For a DataSet, this is only 'description';
for an Image, the keys are 'freq_eff', 'freq_bw_', 'taustart_ts',
'tau_time' & 'url'
The required values are stored in the the REQUIRED attribute
>>> dataset = DataSet(data={'description': 'a dataset'}, database=database)

Here, dataset indirectly holds the database connection:
>>> dataset.database
DataBase(host=heastro1, name=trap, user=trap, ...)
>>> image1 = Image(data={'freq_eff': '80e6', 'freq_bw': 1e6, 'taustart_ts': datetime(2011, 5, 1, 0, 0, 0), 'tau_time': 1800., 'url': '/'}, dataset=dataset) # initialize with defaults
 # note the dataset kwarg, which holds the database connection
>>> image1.tau_time
1800.
>>> image1.taustart_ts
datetime.datetime(2011, 5, 1, 0, 0, 0)
>>> image2 = Image(data={'freq_eff': '80e6', 'freq_bw': 1e6, 'taustart_ts': datetime(2011, 5, 1, 0, 1, 0), 'tau_time': 1500.,'url': '/'}, dataset=dataset)
>>> image2.tau_time
1500
>>> image2.taustart_ts
datetime.datetime(2011, 5, 1, 0, 1, 0)
Images created with a dataset object, are automatically added to that dataset:
>>> dataset.images
set([<tkp.database.dataset.Image object at 0x26fb6d0>, <tkp.database.dataset.Image object at 0x26fb790>])

Updating objects

To update objects, use the update() method.

This method does two things, in the following order:

1. it updates from the database to the object: if there have been
changes in the database, the object will reflect that after executing
update()

2. then, it updates the object (and the database) with values supplied
by the user. The latter values are optional; no supplied values simply
means there aren’t any updates.

>>> image2.update(tau_time=2500) # updates the database as well
>>> image2.tau_time
2500
>>> database.cursor.execute("SELECT tau_time FROM images WHERE imageid=%s" % (image2.id,))
>>> database.cursors.fetchone()[0]
2500
Manually update the database
>>> database.cursor.execute("UPDATE images SET tau_time=2000.0 imageid=%s" % (image2.id,))
>>> image2.tau_time # not updated yet!
2500
>>> image2.update()
>>> image2.tau_time
2000

Assigning objects to a table row on creation

It is also possible to create a DataSet, Image or ExtractedSource instance from the
database, using the id in the initializer:

>>> dataset2 = DataSet(id=dataset.id, database=database)
>>> image3 = Image(imageid=image2.id, database=database)
>>> image3.tau_time
2000

If an id is supplied, data is ignored.

	
class tkp.db.orm.DBObject(data=None, database=None, id=None)[source]

	Generic mini-ORM object

Derived objects will need to implement __init__, which for
practical reasons is split up in __init__ and _init_data: the
latter is called at the end __init__, so a derived __init__ would
have super(Derived, self).__init__() at the start and
super(Derived, self)._init_data() at the end.

__init__ takes care of setting the id, the supplied data dictionary
and the connection to the database.

_init_data sets the actual data either from the database (in case
of a supplied id) or from the data dictionary.

Basic initialization.

Inherited classes need to implement any actual database action,
by calling self._init_data() at the end of their __init__
method.

	
__getattr__(name)[source]

	Obtain the ‘name’ attribute, where ‘name’ is a database column name

	
id

	Add or obtain an id to/from the table

The id is generated if self._id does not exist, effectively
creating a new row in the database.

Several containers have their specific SQL function to create
a new object, so this property will need to overridden.

	
update(**kwargs)[source]

	Update attributes from database, and set database values to
kwargs when provided

This method performs two functions, the first always and the
second optionally after the first:

	it updates the attributes from the database. That is, it
makes sure the Python instance is synchronized with the
database.

	(optional): it sets the column values in the database to
the values provided through kwargs, for the associated
database row. Attributes for the instance are of course
also set to these values. Any kwargs that do not
correspond to a column name are simply ignored.

This function therefore first updates the instance from the
database, and then optionally the database from the instance
(with the provided keyword arguments).

	
class tkp.db.orm.DataSet(data=None, database=None, id=None)[source]

	Class corresponding to the dataset table in the database

If id is supplied, the data and image arguments are ignored.

	
frequency_bands()[source]

	Return a list of distinct bands present in the dataset.

	
id

	Add or obtain an id to/from the table

This uses the SQL function insertDataset().

	
runcat_entries()[source]

	

	Returns:	a list of dictionarys representing rows in runningcatalog,
for all sources belonging to this datasetColumn ‘id’ is returned with the key ‘runcat’

Currently only returns 3 columns:
[{‘runcat,’xtrsrc’,’datapoints’}]

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
update_images()[source]

	Renew the set of images by getting the images for this
dataset from the database. Implemented separately from update(),
since normally this would be too much overhead

	
class tkp.db.orm.ExtractedSource(data=None, image=None, database=None, id=None)[source]

	Class corresponding to the extractedsource table in the database

If id is supplied, the data and image arguments are ignored.

	
lightcurve()[source]

	Obtain the complete light curve (within the current dataset)
for this source.

	Returns:	list of 5-tuples, each tuple being:
- observation start time as a datetime.datetime object
- integration time (float)
- integrated flux (float)
- integrated flux error (float)
- database ID of this particular source

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
class tkp.db.orm.Image(data=None, dataset=None, database=None, id=None)[source]

	Class corresponding to the images table in the database

If id is supplied, the data and image arguments are ignored.

	
associate_extracted_sources(deRuiter_r, new_source_sigma_margin)[source]

	Associate sources from the last images with previously
extracted sources within the same dataset

	Parameters:	deRuiter_r (float [http://docs.python.org/library/functions.html#float]) – The De Ruiter radius for source
association. The default value is set through the
tkp.config module

	
id

	Add or obtain an id to/from the table

This uses the SQL function insertImage()

	
insert_extracted_sources(results, extract='blind')[source]

	Insert a list of sources

	Parameters:	
	results (list [http://docs.python.org/library/functions.html#list]) – list of
utility.containers.ExtractionResult objects (as
returned from
sourcefinder.image.ImageData().extract()), or a list
of data tuples with the source information as follows:
(ra, dec,
ra_fit_err, dec_fit_err,
peak, peak_err,
flux, flux_err,
significance level,
beam major width (as), beam minor width(as),
beam parallactic angle
ew_sys_err, ns_sys_err,
error_radius).

	extract (str [http://docs.python.org/library/functions.html#str]) – ‘blind’, ‘ff_nd’ or ‘ff_ms’
(see db.general.insert_extracted_sources)

	
update_rejected()[source]

	Update self.rejected with the rejected status. Will be false
if not rejected, will be a list of reject descriptions if rejected

	
update_sources()[source]

	Renew the set of sources by getting the sources for this
image from the database

This method is separately implemented, because it’s not always necessary
and potentially (for an image with dozens or more sources) time & memory
consuming.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.monitoringlist – handling of monitoring sources

A collection of back end subroutines (mostly SQL queries).

This module contains the routines to deal with the monitoring
sources, provided by the user via the command line.

	
tkp.db.monitoringlist._insert_1_to_1_assoc()[source]

	The runcat-monitoring pairs are appended to the assocxtrsource
(light-curve) table as a type = 9 datapoint.

	
tkp.db.monitoringlist._insert_new_1_to_1_assoc(image_id)[source]

	The forced fits of the monitoring sources which are new
are appended to the assocxtrsource (light-curve) table
as a type = 8 datapoint.

	
tkp.db.monitoringlist._insert_new_runcat(image_id)[source]

	Insert the fits of the monitoring sources as new sources
into the runningcatalog

	
tkp.db.monitoringlist._insert_new_runcat_flux(image_id)[source]

	Insert the fitted fluxes of the monitoring sources as new datapoints
into the runningcatalog_flux.

Extractedsources for which not a counterpart was found in the
runningcatalog, i.e., those that do not have an entry in the
tempruncat table (t0) will be added as a new source in the
runningcatalog_flux table.

	
tkp.db.monitoringlist._insert_runcat_flux()[source]

	Monitoring sources that were not yet fitted in this frequency band before,
will be appended to it. Those have their first f_datapoint.

	
tkp.db.monitoringlist._insert_tempruncat(image_id)[source]

	Here the associations of forced fits of the monitoring sources
and their runningcatalog counterparts are inserted into the
temporary table.

We follow the implementation of the normal association procedure,
except that we don’t need to match with a De Ruiter radius, since
the counterpart pairs are from the same runningcatalog source.

	
tkp.db.monitoringlist._update_monitor_runcats(image_id)[source]

	Update runcat col of monitor table for newly extracted positions.

	
tkp.db.monitoringlist.associate_ms(image_id)[source]

	Associate the monitoring sources, i.e., their forced fits,
of the current image with the ones in the running catalog.
These associations are treated separately from the normal
associations and there will only be 1-to-1 associations.

The runcat-monitoring source pairs will be inserted in a
temporary table.
Of these, the runcat and runcat_flux tables are updated with
the new datapoints if the (monitoring) source already existed,
otherwise they are inserted as a new source.
The source pair is appended to the light-curve table
(assocxtrsource), with a type = 8 (for the first occurence)
or type = 9 (for existing runcat sources).
After all this, the temporary table is emptied again.

	
tkp.db.monitoringlist.get_monitor_entries(dataset_id)[source]

	Returns the monitor entries relevant to this dataset.

	Parameters:	dataset_id (int [http://docs.python.org/library/functions.html#int]) – Parent dataset.

	Returns:	list of tuples [(monitor_id, ra, decl)]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.nulldetections – handling of null detections

A collection of back end subroutines (mostly SQL queries).

This module contains the routines to deal with null detections.

	
tkp.db.nulldetections._insert_1_to_1_assoc()[source]

	The null detection forced fits are appended to the assocxtrsource
(light-curve) table as a type = 7 datapoint.
Subtable t1 has to take care of the cases where values and
differences might get too small to cause divisions by zero.

	
tkp.db.nulldetections._insert_tempruncat(image_id)[source]

	Here the associations of forced fits and their runningcatalog counterparts
are inserted into the temporary table.

We follow the analogies of the normal association procedure.
The difference here is that we know what the runcat ids are for the
extractedsource.extract_type = 1 (ff_nd) sources are, since these
were inserted at the same time as well.

This is why subtable t0 looks simpler than in the normal case. We
still have to do a left outer join with the runcat_flux table (rf),
because fluxes might not be detected in other bands.
Before being inserted the additional properties are calculated.

	
tkp.db.nulldetections.associate_nd(image_id)[source]

	Associate the null detections (ie forced fits) of the current image.

They will be inserted in a temporary table, which contains the
associations of the forced fits with the running catalog sources.
Also, the forced fits are appended to the assocxtrsource (light-curve)
table. The runcat_flux table is updated with the new datapoints if it
already existed, otherwise it is inserted as a new datapoint.
(We leave the runcat table unchanged.)
After all this, the temporary table is emptied again.

	
tkp.db.nulldetections.get_nulldetections(image_id)[source]

	Returns the runningcatalog sources which:

	Are associated with the skyregion of the current image.

	Do not have a counterpart in the extractedsources of the current
image after source association has run.

	Have been seen (in any band) at a timestamp earlier than that of the
current image.

NB This runs after the source association.

We determine null detections only as those sources which have been
seen at earlier times which don’t appear in the current image.
Sources which have not been seen earlier, and which appear in
different bands at the current timestep, are not null detections,
but are considered as “new” sources.

Returns: list of tuples [(runcatid, ra, decl)]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.db – Database routines

tkp.db.quality – Routines handling the ‘rejectreason’ table.

check image quality

	
class tkp.db.quality.RejectReason(id, desc)

	
	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
desc

	Alias for field number 1

	
id

	Alias for field number 0

	
tkp.db.quality.isrejected(imageid)[source]

	Find out if an image is rejected or not
:param imageid: The image ID of the image to reject
:returns: False if not rejected, a list of reason id’s if rejected

	
tkp.db.quality.reject(imageid, reason, comment)[source]

	Add a reject intro to the db for a given image
:param imageid: The image ID of the image to reject
:param reason: why is the image rejected, a defined in ‘reason’
:param comment: an optional comment with details about the reason

	
tkp.db.quality.unreject(imageid)[source]

	Remove all rejection of a given imageid
:param imageid: The image ID of the image to reject

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.distribute – routines for running on distributed nodes

tkp.distribute implement various computation distribution methods. All
sub modules should communicate with the other parts of TKP through the
tkp.steps submodule.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.telescope – Telescope specific functionality

tkp.telescope.lofar

Functions for calculating LOFAR hardware specific properties.

This module contains numbers of phsysicial properties of the LOFAR array.

For performance reasons these distances are precomputed. One can recompute
them using parse_antennafile(), shortest_distances() and a
AntennaArrays.conf file from
LOFAR/MAC/Deployment/data/StaticMetaData/AntennaArrays in the lofar system
software source tree.

	
tkp.telescope.lofar.antennaarrays.parse_antennafile(positions_file)[source]

	Parses an antenna file from the LOFAR system software repository.

	Parameters:	positions_file – a antenna file

	Returns:	a dictionary with array as key and positions as values

	
tkp.telescope.lofar.antennaarrays.pretty_print(file_)[source]

	Pretty prints a parsed antenna file. Use this function to generate copy
paste code to be used in the top of this file.

	Parameters:	file – a file location

	
tkp.telescope.lofar.antennaarrays.shortest_distances(coordinates, full_array)[source]

	returns a list of distances for each antenna relative to its closest
neighbour.

	Parameters:	
	coordinates – a list of 3 value tuples that represent x,y and z
coordinates of a subset of the array

	full_array – a list of x,y,z coordinates of a full array

	Returns:	a list of floats of distances

Beam characterization calculations.

For more information and the math behind this code go to the LOFAR imaging
capabilities page [http://www.astron.nl/radio-observatory/astronomers/lofar-imaging-capabilities-sensitivity/lofar-imaging-capabilities/lofa].

	
tkp.telescope.lofar.beam.fov(fwhm)[source]

	The Field of View (FoV) of a LOFAR station

	Parameters:	fwhm – nominal Full Width Half Maximum, caulculated with fwhm().

	
tkp.telescope.lofar.beam.fwhm(lambda_, d, alpha1=1.3)[source]

	The nominal Full Width Half Maximum (FWHM) of a LOFAR Station beam.

	Parameters:	
	lambda – wavelength in meters

	d – station diameter.

	alpha1 – depends on the tapering intrinsic to the layout of the station,
and any additional tapering which may be used to form the
station beam. No electronic tapering is presently applied to
LOFAR station beamforming. For a uniformly illuminated circular
aperture, alpha1 takes the value of 1.02, and the value increases
with tapering (Napier 1999).

	Returns:	the nominal Full Width Half Maximum (FWHM)

functions for calculating theoretical noise levels of LOFAR equipment.

For more information about the math used here read the sensitivity of the
LOFAR array page [http://www.astron.nl/radio-observatory/astronomers/lofar-imaging-capabilities-sensitivity/sensitivity-lofar-array/sensiti].

To check the values calculated here one can use this LOFAR image noise
calculator [http://www.astron.nl/~heald/test/sens.php].

	
tkp.telescope.lofar.noise.Aeff_dipole(freq_eff, distance=None)[source]

	The effective area of each dipole in the array is determined by its
distance to the nearest dipole (d) within the full array.

	Parameters:	
	freq_eff – Frequency

	distance – Distance to nearest dipole, only required for LBA.

	
tkp.telescope.lofar.noise.noise_level(freq_eff, bandwidth, tau_time, antenna_set, Ncore, Nremote, Nintl)[source]

	Returns the theoretical noise level (in Jy) given the supplied array
antenna_set.

	Parameters:	
	bandwidth – in Hz

	tau_time – in seconds

	inner – in case of LBA, inner or outer

	antenna_set – LBA_INNER, LBA_OUTER, LBA_SPARSE, LBA or HBA

	
tkp.telescope.lofar.noise.system_sensitivity(freq_eff, Aeff)[source]

	Returns the SEFD of a system, given the freq_eff and effective
collecting area. Returns SEFD in Jansky’s.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.quality – Data-quality control

Data-quality checking related code.

The quality checks are described in the LOFAR Transients Key Science Project
Quality Control Document V1.1 and on the wiki [http://www.lofar.org/operations/doku.php?id=tkp:qualitycontrol].

tkp.quality.restoringbeam

	
tkp.quality.restoringbeam.beam_invalid(semibmaj, semibmin, theta, oversampled_x=30, elliptical_x=2.0)[source]

	Are the beam shape properties ok?

	Parameters:	semibmaj/semibmin – size of the beam in pixels

	Returns:	True/False

	
tkp.quality.restoringbeam.highly_elliptical(semibmaj, semibmin, x=2.0)[source]

	If the beam is highly elliptical it can cause source association
problems within TraP. Again further testing is required to determine
exactly where the cut needs to be.

	Parameters:	Semibmaj/semibmin – describe the beam size in pixels

	Returns:	True if the beam is highly elliptical, False otherwise

	
tkp.quality.restoringbeam.infinite(smaj, smin, bpa)[source]

	If the beam is not correctly fitted by AWimager, one or more parameters
will be recorded as infinite.

	Parameters:	
	smaj – Semi-major axis (arbitrary units)

	smin – Semi-minor axis

	bpa – Postion angle

	
tkp.quality.restoringbeam.not_full_fieldofview(nx, ny, cellsize, fov)[source]

	This has been raised as an interesting test, as if the full field of
view (FOV) has not been imaged we may want to image the full dataset.
The imaged FOV information can be estimated using the number of pixels
and the size of the pixels.

	Parameters:	
	nx – number of pixels in x direction

	ny – number of pixels in y direction

	Returns:	True if the full FOV is imaged, False otherwise

	
tkp.quality.restoringbeam.oversampled(semibmaj, semibmin, x=30)[source]

	It has been identified that having too many pixels across the restoring
beam can lead to bad images, however further testing is required to
determine the exact number.

	Parameters:	Semibmaj/semibmin – describe the beam size in pixels

	Returns:	True if beam is oversampled, False otherwise

	
tkp.quality.restoringbeam.undersampled(semibmaj, semibmin)[source]

	We want more than 2 pixels across the beam major and minor axes.

	Parameters:	Semibmaj/semibmin – describe the beam size in pixels

	Returns:	True if beam is undersampled, False otherwise

tkp.quality.brightsource

	
tkp.quality.brightsource.check_for_valid_ephemeris(measures)[source]

	Checks whether the ephemeris data in use by measures is valid.
measures should already have a valid reference frame.

	
tkp.quality.brightsource.is_bright_source_near(accessor, distance=20)[source]

	Checks if there is any of the bright radio sources defined in targets
near the center of the image.

	Parameters:	
	accessor – a TKP accessor

	distance – maximum allowed distance of a bright source (in degrees)

	Returns:	False if not bright source is near, description of source if a
bright source is near

tkp.quality.rms

	
tkp.quality.rms.rms_invalid(rms, noise, low_bound=1, high_bound=50)[source]

	Is the RMS value of an image outside the plausible range?

	Parameters:	
	rms – RMS value of an image, can be computed with
tkp.quality.statistics.rms

	noise – Theoretical noise level of instrument, can be calculated with
tkp.lofar.noise.noise_level

	low_bound – multiplied with noise to define lower threshold

	high_bound – multiplied with noise to define upper threshold

	Returns:	True/False

tkp.quality.statistics

functions for calculating statistical properties of LOFAR images

	
tkp.quality.statistics.clip(data, sigma=3)[source]

	Remove all values above a threshold from the array.
Uses iterative clipping at sigma value until nothing more is getting clipped.
:param data: a numpy array

	
tkp.quality.statistics.rms(data)[source]

	Returns the RMS of the data about the median.
:param data: a numpy array

	
tkp.quality.statistics.rms_with_clipped_subregion(data, rms_est_sigma=3, rms_est_fraction=4)[source]

	RMS for quality-control.

Root mean square value calculated from central region of an image.
We sigma-clip the input-data in an attempt to exclude source-pixels
and keep only background-pixels.

	Parameters:	
	data – A numpy array

	rms_est_sigma – sigma value used for clipping

	rms_est_fraction – determines size of subsection, result will be
1/fth of the image size where f=rms_est_fraction

returns the rms value of a iterative sigma clipped subsection of an image

	
tkp.quality.statistics.subregion(data, f=4)[source]

	Returns the inner region of a image, according to f.

Resulting area is 4/(f*f) of the original.
:param data: a numpy array

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.sourcefinder – source finding and fitting

	tkp.sourcefinder.deconv

	tkp.sourcefinder.image – Image class & routines

	tkp.sourcefinder.extract – Source extraction routines

	tkp.sourcefinder.gaussian – defines a two dimensional Gaussian function

	tkp.sourcefinder.fitting – Source fitting routines

	tkp.sourcefinder.stats – Statistics specific to source finding for radio images.

	tkp.sourcefinder.utils – Utility routines

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.sourcefinder – source finding and fitting

tkp.sourcefinder.deconv

Gaussian deconvolution.

	
tkp.sourcefinder.deconv.deconv(fmaj, fmin, fpa, cmaj, cmin, cpa)[source]

	Deconvolve a Gaussian “beam” from a Gaussian component.

When we fit an elliptical Gaussian to a point in our image, we are
actually fitting to a convolution of the physical shape of the source with
the beam pattern of our instrument. This results in the fmaj/fmin/fpa
arguments to this function.

Since the shape of the (clean) beam (arguments cmaj/cmin/cpa) is known, we
can deconvolve it from the fitted parameters to get the “real” underlying
physical source shape, which is what this function returns.

	Parameters:	
	fmaj (float [http://docs.python.org/library/functions.html#float]) – Fitted major axis

	fmin (float [http://docs.python.org/library/functions.html#float]) – Fitted minor axis

	fpa (float [http://docs.python.org/library/functions.html#float]) – Fitted position angle of major axis

	cmaj (float [http://docs.python.org/library/functions.html#float]) – Clean beam major axis

	cmin (float [http://docs.python.org/library/functions.html#float]) – Clean beam minor axis

	cpa (float [http://docs.python.org/library/functions.html#float]) – Clean beam position angle of major axis

	Returns:	rmaj – Real major axis
rmin (float): Real minor axis
rpa (float): Real position angle of major axis
ierr (int): Number of components which failed to deconvolve

	Return type:	float [http://docs.python.org/library/functions.html#float]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.sourcefinder – source finding and fitting

tkp.sourcefinder.image – Image class & routines

This module provides simple access to an image, without database
overhead. The Image class handles the actual data (a (2D) numpy
array), the world coordinate system (a tkp.utility.coordinates.WCS
instance) and the beam information. While these three objects are
supplied upon instantiation of an Image, one can use a
tkp.accessors.dataaccessor.DataAccessor object to automatically
derive these from the image file itself (provided the header
information in the file is correct).

Some generic utility routines for number handling and
calculating (specific) variances

	
class tkp.sourcefinder.image.ImageData(data, beam, wcs, margin=0, radius=0, back_size_x=32, back_size_y=32, residuals=True)[source]

	Encapsulates an image in terms of a numpy array + meta/headerdata.

This is your primary contact point for interaction with images: it icludes
facilities for source extraction and measurement, etc.

Sets up an ImageData object.

	Args:

	
	data (2D numpy.ndarray): actual image data

	wcs (utility.coordinates.wcs): world coordinate system
specification

	beam (3-tuple): beam shape specification as
(semimajor, semiminor, theta)

	
backmap

	Background map

	
static box_slice_about_pixel(x, y, box_radius)[source]

	Returns a slice centred about (x,y), of width = 2*int(box_radius) + 1

	
clearcache()[source]

	Zap any calculated data stored in this object.

Clear the background and rms maps, labels, clip, and any locally held
data. All of these can be reconstructed from the data accessor.

Note that this must be run to pick up any new settings.

	
data

	Masked image data

	
data_bgsubbed

	Background subtracted masked image data

	
extract(det, anl, noisemap=None, bgmap=None, labelled_data=None, labels=None, deblend_nthresh=0, force_beam=False)[source]

	Kick off conventional (ie, RMS island finding) source extraction.

Kwargs:

	det (float): detection threshold, as a multiple of the RMS

	noise. At least one pixel in a source must exceed this
for it to be regarded as significant.

	anl (float): analysis threshold, as a multiple of the RMS

	noise. All the pixels within the island that exceed
this will be used when fitting the source.

noisemap (numpy.ndarray):

bgmap (numpy.ndarray):

	deblend_nthresh (int): number of subthresholds to use for

	deblending. Set to 0 to disable.

	force_beam (bool): force all extractions to have major/minor axes

	equal to the restoring beam

	Returns:	tkp.utility.containers.ExtractionResults

	
fd_extract(alpha, anl=None, noisemap=None, bgmap=None, deblend_nthresh=0, force_beam=False)[source]

	False Detection Rate based source extraction.
The FDR procedure guarantees that <FDR> < alpha.

See Hopkins et al., AJ, 123, 1086 (2002) [http://adsabs.harvard.edu/abs/2002AJ....123.1086H].

	
fit_fixed_positions(positions, boxsize, threshold=None, fixed='position+shape', ids=None)[source]

	Convenience function to fit a list of sources at the given positions

This function wraps around fit_to_point().

	Parameters:	
	positions (list [http://docs.python.org/library/functions.html#list]) – list of (RA, Dec) tuples. Positions to be fit,
in decimal degrees.

	boxsize – See fit_to_point()

	threshold – as above.

	fixed – as above.

	ids (list [http://docs.python.org/library/functions.html#list]) – A list of identifiers. If not None, then must match
the length and order of the requested_fits. Any
successfully fit positions will be returned in a tuple
along with the matching id. As these are simply passed back to
calling code they can be a string, tuple or whatever.

In particular, boxsize is in pixel coordinates as in
fit_to_point, not in sky coordinates.

	Returns:	A list of successful fits.
If ids is None, returns a single list of
tkp.sourcefinder.extract.Detection s.
Otherwise, returns a tuple of two matched lists:
([detections], [matching_ids]).

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
fit_to_point(x, y, boxsize, threshold, fixed)[source]

	Fit an elliptical Gaussian to a specified point on the image.

The fit is carried on a square section of the image, of length
boxsize & centred at pixel coordinates x, y. Any data
below threshold * rmsmap is not used for fitting. If fixed
is set to position, then the pixel coordinates are fixed
in the fit.

Returns an instance of tkp.sourcefinder.extract.Detection.

	
flux_at_pixel(x, y, numpix=1)[source]

	Return the background-subtracted flux at a certain position
in the map

	
grids

	Gridded RMS and background data for interpolating

	
label_islands(detectionthresholdmap, analysisthresholdmap)[source]

	Return a lablled array of pixels for fitting.

	Parameters:	
	detectionthresholdmap (numpy.ndarray) –

	analysisthresholdmap (numpy.ndarray) –

	Returns:	list of valid islands (list of int)

labelled islands (numpy.ndarray)

	
pixmax

	Maximum pixel value (pre-background subtraction)

	
pixmin

	Minimum pixel value (pre-background subtraction)

	
reverse_se(det)[source]

	Run source extraction on the negative of this image.

Obviously, there should be no sources in the negative image, so this
tells you about the false positive rate.

We need to clear cached data – backgroung map, cached clips, etc –
before & after doing this, as they’ll interfere with the normal
extraction process. If this is regularly used, we’ll want to
implement a separate cache.

	
rmsmap

	RMS map

	
xdim

	X pixel dimension of (unmasked) data

	
ydim

	Y pixel dimension of (unmasked) data

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.sourcefinder – source finding and fitting

tkp.sourcefinder.extract – Source extraction routines

Source Extraction Helpers.

These are used in conjunction with image.ImageData.

	
class tkp.sourcefinder.extract.Detection(paramset, imagedata, chunk=None, eps_ra=0, eps_dec=0)[source]

	The result of a measurement at a given position in a given image.

	
distance_from(x, y)[source]

	Distance from center

	
serialize(ew_sys_err, ns_sys_err)[source]

	Return source properties suitable for database storage.

We manually add ew_sys_err, ns_sys_err

returns: a list of tuples containing all relevant fields

	
class tkp.sourcefinder.extract.Island(data, rms, chunk, analysis_threshold, detection_map, beam, deblend_nthresh, deblend_mincont, structuring_element, rms_orig=None, flux_orig=None, subthrrange=None)[source]

	The source extraction process forms islands, which it then fits.
Each island needs to know its position in the image (ie, x, y pixel
value at one corner), the threshold above which it is detected
(analysis_threshold by default, but will increase if the island is
the result of deblending), and a data array.

The island should provide a means of deblending: splitting itself
apart and returning multiple sub-islands, if necessary.

	
deblend(niter=0)[source]

	Return a decomposed numpy array of all the subislands.

Iterate up through subthresholds, looking for our island
splitting into two. If it does, start again, with two or more
separate islands.

	
fit(fixed=None)[source]

	Fit the position

	
noise()[source]

	Noise at maximum position

	
sig()[source]

	Deviation

	
threshold()[source]

	Threshold

	
class tkp.sourcefinder.extract.ParamSet(clean_bias=0.0, clean_bias_error=0.0, frac_flux_cal_error=0.0, alpha_maj1=2.5, alpha_min1=0.5, alpha_maj2=0.5, alpha_min2=2.5, alpha_maj3=1.5, alpha_min3=1.5)[source]

	All the source fitting methods should go to produce a ParamSet, which
gives all the information necessary to make a Detection.

	
calculate_errors(noise, beam, threshold)[source]

	Calculate positional errors

Uses _condon_formulae() if this object is based on a Gaussian fit,
_error_bars_from_moments() if it’s based on moments.

	
deconvolve_from_clean_beam(beam)[source]

	Deconvolve with the clean beam

	
keys()[source]

	

	
tkp.sourcefinder.extract.source_profile_and_errors(data, threshold, noise, beam, fixed=None)[source]

	Return a number of measurable properties with errorbars

Given an island of pixels it will return a number of measurable
properties including errorbars. It will also compute residuals
from Gauss fitting and export these to a residual map.

In addition to handling the initial parameter estimation, and any fits
which fail to converge, this function runs the goodness-of-fit
calculations -
see tkp.sourcefinder.fitting.goodness_of_fit() for details.

	Parameters:	
	data (numpy.ndarray) – array of pixel values, can be a masked
array, which is necessary for proper Gauss fitting,
because the pixels below the threshold in the corners and
along the edges should not be included in the fitting
process

	threshold (float [http://docs.python.org/library/functions.html#float]) – Threshold used for selecting pixels for the
source (ie, building an island)

	noise (float [http://docs.python.org/library/functions.html#float]) – Noise level in data

	beam (tuple [http://docs.python.org/library/functions.html#tuple]) – beam parameters (semimaj,semimin,theta)

Kwargs:

	fixed (dict): Parameters (and their values) to hold fixed while fitting.

	Passed on to fitting.fitgaussian().

	Returns:	a populated ParamSet, and a residuals map.
Note the residuals map is a regular ndarray, where masked (unfitted)
regions have been filled with 0-values.

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.sourcefinder – source finding and fitting

tkp.sourcefinder.gaussian – defines a two dimensional Gaussian function

Definition of a two dimensional elliptical Gaussian.

	
tkp.sourcefinder.gaussian.gaussian(height, center_x, center_y, semimajor, semiminor, theta)[source]

	Return a 2D Gaussian function with the given parameters.

	Parameters:	
	height (float [http://docs.python.org/library/functions.html#float]) – (z-)value of the 2D Gaussian

	center_x (float [http://docs.python.org/library/functions.html#float]) – x center of the Gaussian

	center_y (float [http://docs.python.org/library/functions.html#float]) – y center of the Gaussian

	semimajor (float [http://docs.python.org/library/functions.html#float]) – major axis of the Gaussian

	semiminor (float [http://docs.python.org/library/functions.html#float]) – minor axis of the Gaussian

	theta (float [http://docs.python.org/library/functions.html#float]) – angle of the 2D Gaussian in radians, measured
between the semi-major and y axes, in counterclockwise
direction.

	Returns:	2D Gaussian (function of pixel coords (x,y))

	Return type:	lambda

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.sourcefinder – source finding and fitting

tkp.sourcefinder.fitting – Source fitting routines

Source fitting routines.

	
tkp.sourcefinder.fitting.fitgaussian(pixels, params, fixed=None, maxfev=0)[source]

	Calculate source positional values by fitting a 2D Gaussian

	Parameters:	
	pixels (numpy.ma.MaskedArray) – Pixel values (with bad pixels masked)

	params (dict [http://docs.python.org/library/stdtypes.html#dict]) – initial fit parameters (possibly estimated
using the moments() function, above)

	Kwargs:

	
	fixed (dict): parameters & their values to be kept frozen (ie, not

	fitted)

maxfev (int): maximum number of calls to the error function

	Returns:	peak, total, x barycenter, y barycenter, semimajor,
semiminor, theta (radians)

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	Raises:	exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] – In case of a bad fit.

Perform a least squares fit to an elliptical Gaussian.

If a dict called fixed is passed in, then parameters specified within the
dict with the same names as fit_params (below) will be “locked” in the
fitting process.

	
tkp.sourcefinder.fitting.goodness_of_fit(masked_residuals, noise, beam)[source]

	Calculates the goodness-of-fit values, chisq and reduced_chisq.

Warning

We do not use the standard chi-squared
formula [https://en.wikipedia.org/wiki/Goodness_of_fit#Regression_analysis]
for calculating these goodness-of-fit
values, and should probably rename them in the next release.
See below for details.

These goodness-of-fit values are related to, but not quite the same as
reduced chi-squared.
Strictly speaking the reduced chi-squared is statistically
invalid for a Gaussian model from the outset
(see arxiv:1012.3754 [http://arxiv.org/abs/1012.3754]).
We attempt to provide a resolution-independent estimate of goodness-of-fit
(‘reduced chi-squared’), by using the same ‘independent pixels’ correction
as employed when estimating RMS levels, to normalize the chi-squared value.
However, as applied to the standard formula this will sometimes
imply that we are fitting a fractional number of datapoints less than 1!
As a result, it doesn’t really make sense to try and apply the
‘degrees-of-freedom’ correction, as this would likely result in a
negative reduced_chisq value.
(And besides, the ‘degrees of freedom’ concept is invalid for non-linear
models.) Finally, note that when called from
source_profile_and_errors(), the noise-estimate at the peak-pixel
is supplied, so will typically over-estimate the noise and
hence under-estimate the chi-squared values.

	Parameters:	
	masked_residuals (numpy.ma.MaskedArray) – The pixel-residuals from the fit

	noise (float [http://docs.python.org/library/functions.html#float]) – An estimate of the noise level. Could also be set to
a masked numpy array matching the data, for per-pixel noise
estimates.

	beam (tuple [http://docs.python.org/library/functions.html#tuple]) – Beam parameters

	Returns:	chisq, reduced_chisq

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
tkp.sourcefinder.fitting.moments(data, beam, threshold=0)[source]

	Calculate source positional values using moments

	Parameters:	
	data (numpy.ndarray) – Actual 2D image data

	beam (3-tuple) – beam (psf) information, with semi-major and
semi-minor axes

	Returns:	peak, total, x barycenter, y barycenter, semimajor
axis, semiminor axis, theta

	Return type:	dict [http://docs.python.org/library/stdtypes.html#dict]

	Raises:	exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] – in case of NaN in input.

Use the first moment of the distribution is the barycenter of an
ellipse. The second moments are used to estimate the rotation angle
and the length of the axes.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.sourcefinder – source finding and fitting

tkp.sourcefinder.stats – Statistics specific to source finding for radio images.

Generic utility routines for number handling and calculating (specific)
variances used by the TKP sourcefinder.

	
tkp.sourcefinder.stats.sigma_clip(data, beam, sigma=<function unbiased_sigma>, max_iter=100, centref=<function median>, distf=<function var>, my_iterations=0, corr_clip=1.0)[source]

	Iterative clipping

By default, this performs clipping of the standard deviation about the
median of the data. But by tweaking centref/distf, it could be much
more general.

max_iter sets the maximum number of iterations used.

my_iterations is a counter for recursive operation of the code; leave it
alone unless you really want to pretend to jump into the middle of a loop.

sigma is subtle: if a callable is given, it is passed a copy of the data
array and can calculate a clipping limit. See, for e.g., unbiased_sigma()
defined above. However, if it isn’t callable, sigma is assumed to just set
a hard limit.

	To do: Improve documentation

	-Returns???
-How does it make use of the beam? (It estimates the noise correlation)

	
tkp.sourcefinder.stats.unbiased_sigma(N_indep)[source]

	Calculate an unbiased sigma for using in sigma clipping.

The formula below for cliplim is pretty subtle. Kappa, sigma
clipping should be such that the noise is not biased by
it. Consequently, the clipping boundaries should be such that
exactly half an independent pixel should exceed it if the map were
source free. A rigid boundary of 3 sigma is appropriate only if the
number of independent pixels is about 185 (the number of
independent pixels equals the number of pixels divided by the
beamsize in pixels).

The condition that kappa, sigma clipping may not bias the noise is
translated in the formula below, using Gaussian statistics. A
disadvantage of this is that more iterations of kappa, sigma
clipping are needed, compared to 3 sigma clipping. However, the
noise values derived are generally significantly different (lower)
compared to 3 sigma clipping.

	
tkp.sourcefinder.stats.var_helper(N)[source]

	Correct for the fact the rms noise is computed from a clipped
distribution.

That noise will always be lower than the noise from the complete
distribution. The correction factor is a function of the computed
rms noise only.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.sourcefinder – source finding and fitting

tkp.sourcefinder.utils – Utility routines

This module contain utilities for the source finding routines

	
tkp.sourcefinder.utils.calculate_beamsize(semimajor, semiminor)[source]

	Calculate the beamsize based on the semi major and minor axes

	
tkp.sourcefinder.utils.calculate_correlation_lengths(semimajor, semiminor)[source]

	Calculate the Condon correlation length

In order to derive the error bars from Gauss fitting from the
Condon (1997, PASP 109, 116C) formulae, one needs the so called
correlation length. The Condon formulae assumes a circular area
with diameter theta_N (in pixels) for the correlation. This was
later generalized by Hopkins et al. (2003, AJ 125, 465) for
correlation areas which are not axisymmetric.

Basically one has theta_N^2 = theta_B*theta_b.

Good estimates in general are:

	theta_B = 2.0 * semimajar

	theta_b = 2.0 * semiminor

	
tkp.sourcefinder.utils.circular_mask(xdim, ydim, radius)[source]

	Returns a numpy array of shape (xdim, ydim). All points with radius of
the centre are set to 0; outside that region, they are set to 1.

	
tkp.sourcefinder.utils.flatten(nested_list)[source]

	Flatten a nested list

Nested lists are made in the deblending algorithm. They’re
awful. This is a piece of code I grabbed from
http://www.daniweb.com/code/snippet216879.html.

The output from this method is a generator, so make sure to turn
it into a list, like this:

flattened = list(flatten(nested)).

	
tkp.sourcefinder.utils.fudge_max_pix(semimajor, semiminor, theta)[source]

	Estimate peak flux correction at pixel of maximum flux

Previously, we adopted Rengelink’s correction for the
underestimate of the peak of the Gaussian by the maximum pixel
method: fudge_max_pix = 1.06. See the WENSS paper
(1997A&AS..124..259R) or his thesis. (The peak of the Gaussian
is, of course, never at the exact center of the pixel, that’s why
the maximum pixel method will always underestimate it.)

But, instead of just taking 1.06 one can make an estimate of the
overall correction by assuming that the true peak is at a random
position on the peak pixel and averaging over all possible
corrections. This overall correction makes use of the beamshape,
so strictly speaking only accurate for unresolved sources.

	
tkp.sourcefinder.utils.generate_result_maps(data, sourcelist)[source]

	Return a source and residual image

Given a data array (image) and list of sources, return two images, one
showing the sources themselves and the other the residual after the
sources have been removed from the input data.

	
tkp.sourcefinder.utils.generate_subthresholds(min_value, max_value, num_thresholds)[source]

	Generate a series of num_thresholds logarithmically spaced values
in the range (min_value, max_value) (both exclusive).

	
tkp.sourcefinder.utils.get_error_radius(wcs, x_value, x_error, y_value, y_error)[source]

	Estimate an absolute angular error on the position (x_value, y_value)
with the given errors.

This is a pessimistic estimate, because we take sum of the error
along the X and Y axes. Better might be to project them both back on
to the major/minor axes of the elliptical fit, but this should do for
now.

	
tkp.sourcefinder.utils.maximum_pixel_method_variance(semimajor, semiminor, theta)[source]

	Estimate variance for peak flux at pixel position of maximum

When we use the maximum pixel method, with a correction
fudge_max_pix, there should be no bias, unless the peaks of the
Gaussians are not randomly distributed, but relatively close to
the centres of the pixels due to selection effects from detection
thresholds.

Disregarding the latter effect and noise, we can compute the
variance of the maximum pixel method by integrating (the true
flux-the average true flux)^2 = (the true flux-fudge_max_pix)^2
over the pixel area and dividing by the pixel area (= 1). This
is just equal to integral of the true flux^2 over the pixel area
- fudge_max_pix^2.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.steps – Define logic for each pipeline stage

tkp.steps.forced_fitting

	
tkp.steps.forced_fitting.perform_forced_fits(fit_posns, fit_ids, image_path, extraction_params)[source]

	Perform forced source measurements on an image based on a list of
positions.

	Parameters:	
	fit_posns (list [http://docs.python.org/library/functions.html#list]) – List of (RA, Dec) tuples: Positions to be fit.

	fit_ids – List of identifiers for each requested fit position.

	image_path (str [http://docs.python.org/library/functions.html#str]) – path to image for measurements.

	extraction_params (dict [http://docs.python.org/library/stdtypes.html#dict]) – source extraction parameters, as a dictionary.

	Returns:	A matched pair of lists (serialized_fits, ids), corresponding to
successfully fitted positions.
NB returned lists may be shorter than input lists
if some fits are unsuccessful.

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

tkp.steps.misc

Various subroutines used in the main pipeline flow.

We keep them separately to make the pipeline logic easier to read at a glance.

	
tkp.steps.misc.check_job_configs_match(job_config_1, job_config_2)[source]

	Check if job configs match, except dataset_id which we expect to change.

	
tkp.steps.misc.group_per_timestep(images)[source]

	groups a list of TRAP images per time step.

Per time step the images are order per frequency and then per stokes. The
eventual order is:

(t1, f1, s1), (t1, f1, s2), (t1, f2, s1), (t1, f2, s2), (t2, f1, s1), ...)
where:

	t is time sorted by old to new

	f is frequency sorted from low to high

	s is stokes, sorted by ID as defined in the database schema

	Parameters:	images (list [http://docs.python.org/library/functions.html#list]) – Images to group.

	Returns:	List of tuples. The list is sorted by timestamp.
Each tuple has the timestamp as a first element,
and a list of images sorted by frequency and then stokes
as the second element.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
tkp.steps.misc.load_job_config(pipe_config)[source]

	Locates the job_params.cfg in ‘job_directory’ and loads via ConfigParser.

	
tkp.steps.misc.setup_log_file(log_dir, debug=False, basename='trap.log')[source]

	sets up a catch all logging handler which writes to log_file.

	Parameters:	
	log_file – log file to write

	debug – do we want debug level logging?

	basename – basename of the log file

tkp.steps.persistence

This step is used for the storing of images and metadata
to the database and image cache (mongodb).

	
tkp.steps.persistence.create_dataset(dataset_id, description)[source]

	Creates a dataset if it doesn’t exists
Note: Should only be used in a master recipe
:returns: the database ID of this dataset

	
tkp.steps.persistence.extract_metadatas(images, rms_est_sigma, rms_est_fraction)[source]

	Extracts metadata and rms_qc values from the list of images.

	Parameters:	
	images – list of image urls

	rms_est_sigma – used for RMS calculation, see tkp.quality.statistics

	rms_est_fraction – used for RMS calculation, see tkp.quality.statistics

	Returns:	a list of metadata’s. The metadata will be False if extraction failed.

	
tkp.steps.persistence.image_to_mongodb(filename, hostname, port, db)[source]

	Copy a file into mongodb

	
tkp.steps.persistence.node_steps(images, image_cache_config, rms_est_sigma, rms_est_fraction)[source]

	this function executes all persistence steps that should be executed on a node.
Note: Should only be used in a node recipe

	
tkp.steps.persistence.store_images(images_metadata, extraction_radius_pix, dataset_id)[source]

	Add images to database.
Note that all images in one dataset should be inserted in one go, since the
order is very important here. If you don’t add them all in once, you should
make sure they are added in the correct order e.g. sorted by observation
time.

Note: Should only be used in a master recipe

	Parameters:	
	images_metadata – list of dicts containing image metadata

	extraction_radius_pix – (float) Used to calculate the ‘skyregion’

	dataset_id – dataset id to be used. don’t use value from parset file
since this can be -1 (TraP way of setting auto increment)

	Returns:	the database ID of this dataset

tkp.steps.prettyprint

Pretty print the classified transients

tkp.steps.quality

All generic quality checking routines.

	
tkp.steps.quality.reject_check(image_path, job_config)[source]

	
	checks if an image passes the quality check. If not, a rejection

	tuple is returned.

NOTE: should only be used on a NODE

	Parameters:	
	id – database ID of image. This is not used but kept as a reference for
distributed computation!

	image_path – path to image

	parset_file – parset file location with quality check parameters

	Returns:	(rejection ID, description) if rejected, else None

	
tkp.steps.quality.reject_image(image_id, reason, comment)[source]

	Adds a rejection for an image to the database

NOTE: should only be used on a MASTER node

tkp.steps.source_extraction

	
class tkp.steps.source_extraction.ExtractionResults(sources, rms_min, rms_max)

	
	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
rms_max

	Alias for field number 2

	
rms_min

	Alias for field number 1

	
sources

	Alias for field number 0

	
tkp.steps.source_extraction.extract_sources(image_path, extraction_params)[source]

	Extract sources from an image.

	Parameters:	
	image_path – path to file from which to extract sources.

	extraction_params – dictionary containing at least the detection and
analysis threshold and the association radius, the last one a
multiplication factor of the de Ruiter radius.

	Returns:	list of ExtractionResults named tuples containing source measurements,
min RMS value and max RMS value

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.testutil – helper functions for writing tests

tkp.testutil.db_queries

A collection of back end db query subroutines used for unittesting

	
tkp.testutil.db_queries.convert_to_cartesian(conn, ra, decl)[source]

	Returns tuple (x,y,z)

	
tkp.testutil.db_queries.get_assoc_entries(db, runcat_id)[source]

	Return the full history of variability indices for a runcat entry,
ordered by time.

tkp.testutil.db_subs

	
class tkp.testutil.db_subs.ExtractedSourceTuple(ra, dec, ra_fit_err, dec_fit_err, peak, peak_err, flux, flux_err, sigma, beam_maj, beam_min, beam_angle, ew_sys_err, ns_sys_err, error_radius, fit_type, chisq, reduced_chisq)

	
	
__getnewargs__()

	Return self as a plain tuple. Used by copy and pickle.

	
__getstate__()

	Exclude the OrderedDict from pickling

	
__repr__()

	Return a nicely formatted representation string

	
beam_angle

	Alias for field number 11

	
beam_maj

	Alias for field number 9

	
beam_min

	Alias for field number 10

	
chisq

	Alias for field number 16

	
dec

	Alias for field number 1

	
dec_fit_err

	Alias for field number 3

	
error_radius

	Alias for field number 14

	
ew_sys_err

	Alias for field number 12

	
fit_type

	Alias for field number 15

	
flux

	Alias for field number 6

	
flux_err

	Alias for field number 7

	
ns_sys_err

	Alias for field number 13

	
peak

	Alias for field number 4

	
peak_err

	Alias for field number 5

	
ra

	Alias for field number 0

	
ra_fit_err

	Alias for field number 2

	
reduced_chisq

	Alias for field number 17

	
sigma

	Alias for field number 8

	
class tkp.testutil.db_subs.MockSource(template_extractedsource, lightcurve)[source]

	Defines a MockSource for generating mock source lists.

(These can be used to test the database routines.)

The lightcurve-dict entries define the times of non-zero
flux (we do not support time-ranges here, discretely defined datapoints are
sufficiently complex for the current unit-test suite). In this case,
any undefined datetimes requested will produce a zero-flux measurement.
A defaultdict may be supplied to simulate a steady-flux source.

	Parameters:	
	template_extractedsource (ExtractedSourceTuple) – This defines
everything except the flux and significance of the
extraction (i.e. position, fit error, beam properties, etc.).

	lightcurve (dict [http://docs.python.org/library/stdtypes.html#dict]) – A dict mapping datetime -> flux value [Jy].
Any undefined datetimes will produce a zero-flux measurement.
A defaultdict with constant-valued default may be supplied to
represent a steady source, e.g.

>>>MockSource(base_source, defaultdict(lambda:steady_flux_val))

	
simulate_extraction(db_image, extraction_type, rms_attribute='rms_min')[source]

	Simulate extraction process, returns extracted source or none.

Uses the database image properties (extraction region, rms values)
to determine if this source would be extracted in the given image,
and return an extraction or None accordingly.

	Parameters:	
	db_image (int [http://docs.python.org/library/functions.html#int]) – Database Image object.

	extraction_type – Valid values are ‘blind’, ‘ff_nd’. If ‘blind’
then we only return an extracted source if the flux is above
rms_value * detection_threshold.

	rms_attribute (str [http://docs.python.org/library/functions.html#str]) – Valid values are ‘rms_min’, ‘rms_max’.
Determines which rms value we use when deciding if this source
will be seen in a blind extraction.

	Returns:	ExtractedSourceTuple or None.

	
value_at_dtime(dtime, image_rms)[source]

	Returns an extractedsource for a given datetime.

If lightcurve is defined but does not contain the requested datetime,
then peak, flux, sigma are all set to zero.

	
tkp.testutil.db_subs.deRuiter_radius(src1, src2)[source]

	Calculates the De Ruiter radius for two sources

	
tkp.testutil.db_subs.delete_test_database(database)[source]

	Use with caution!

	NB. Not the same as a freshly initialised database.

	All the sequence counters are offset.

	
tkp.testutil.db_subs.example_dbimage_data_dict(**kwargs)[source]

	Defines the canonical default image-data for unit-testing the database.

By defining this in one place we make it simple to make changes.
A subset of the default values may be overridden by passing the keys
as keyword-args.

Note that while RA, Dec and extraction radius are arbitrary,
they should (usually) be close enough and large enough to enclose
the RA and Dec of any fake source extractions inserted, since the
association routines reject sources outside of designated extraction
regions.

	
tkp.testutil.db_subs.example_extractedsource_tuple(ra=123.123, dec=10.5, ra_fit_err=0.001388888888888889, dec_fit_err=0.0016666666666666668, peak=0.015, peak_err=0.0005, flux=0.015, flux_err=0.0005, sigma=15.0, beam_maj=100.0, beam_min=100.0, beam_angle=45.0, ew_sys_err=20.0, ns_sys_err=20.0, error_radius=10.0, fit_type=0, chisq=5.0, reduced_chisq=1.5)[source]

	Generates an example ‘fake extraction’ for unit testing.

Note that while RA and Dec are arbitrary, they should (usually) be close
to the RA and Dec of any fake images used, since the association routines
reject sources outside of designated extraction regions.

	
tkp.testutil.db_subs.generate_timespaced_dbimages_data(n_images, timedelta_between_images=datetime.timedelta(1), **kwargs)[source]

	Generate a list of image data dictionaries.

The image-data dicts are identical except for having the taustart_ts
advanced by a fixed timedelta for each entry.

These can be used to create known entries in the image table, for
unit-testing.

A subset of the image-data defaults may be overridden by passing the relevant
dictionary values as keyword args.

	
tkp.testutil.db_subs.get_newsources_for_dataset(dsid)[source]

	Returns dicts representing all newsources for this dataset.

	Parameters:	dsid – Dataset id

	Returns:	(list of dicts) Each dict represents one newsource.
The dict keys are all the columns in the newsources table, plus
the ‘taustart_ts’ from the image table, which represents the
trigger time.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
tkp.testutil.db_subs.get_sources_filtered_by_final_variability(dataset_id, eta_min, v_min)[source]

	Search the database to find high-variability lightcurves.

Uses the variability associated with the last datapoint in a lightcurve
as the key criteria.

	Parameters:	
	dataset_id (int [http://docs.python.org/library/functions.html#int]) – Dataset to search

	eta_min (float [http://docs.python.org/library/functions.html#float]) – Minimum value of eta-index to return.

	v_min (float [http://docs.python.org/library/functions.html#float]) – Minimum value of V-index to return.

	Returns:	(list of dicts) Each dict represents a runningcatalog_flux entry
matching the filter criteria.

	Return type:	list [http://docs.python.org/library/functions.html#list]

	
tkp.testutil.db_subs.insert_image_and_simulated_sources(dataset, image_params, mock_sources, new_source_sigma_margin, deruiter_radius=3.7)[source]

	Simulates the standard database image-and-source insertion logic using mock
sources.

	Parameters:	
	dataset – The dataset object

	image_params (dict [http://docs.python.org/library/stdtypes.html#dict]) – Contains the image properties.

	mock_sources (list of MockSource) – The mock sources to simulate.

	new_source_sigma_margin (float [http://docs.python.org/library/functions.html#float]) – Parameter passed to source-association
routines.

	deruiter_radius (float [http://docs.python.org/library/functions.html#float]) – Parameter passed to source-association
routines.

	Returns:	3-tuple (image, list of blind extractions, list of forced fits).

	
tkp.testutil.db_subs.lightcurve_metrics(src_list)[source]

	Calculates various metrics for a lightcurve made up of source extractions

These are normally calculated internally in the database - this function
serves as a sanity check, and is used for unit-testing purposes.

Returns a list of dictionaries, the nth dict representing the value
of the metrics after processing the first n extractions in the lightcurve.
The dict keys mirror the column names in the database, to make
cross-checking of results trivial.

Final note: this function is very inefficient, recalculating over the
first n extractions for each step. We could make it iterative, updating
the weighted averages as we do in the database. However, this way
provides a stronger cross-check that our iterative SQL approaches are
correct - less chance of making the same mistakes in two languages!

tkp.testutil.decorators

	
tkp.testutil.decorators.high_ram_requirements()[source]

	Used to disable tests that break Travis due to out-of-memory issues.

	
tkp.testutil.decorators.requires_test_db_managed()[source]

	This decorator is used to disable tests that do potentially low level
database management operations like destroy and create. You can enable
these tests by setting the TKP_TESTDBMANAGEMENT environment variable.

tkp.testutil.mock

Mock data objects for use in testing.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.utility – miscellaneous utility routines

Submodules:

	tkp.utility.containers – Generic container classes

	tkp.utility.coordinates – Coordinate routines

	tkp.utility.uncertain – Uncertainty class

	tkp.utility.sigmaclip – Generic sigma clipping routine

	tkp.utility.fits – Some FITS routines

	tkp.utility.memoize – Memoization decorator

Root level tkp.utility functions that don’t justify a submodule:

	
class tkp.utility.adict[source]

	Accessing dict keys like an attribute.

	
tkp.utility.substitute_inf(value, sub='Infinity')[source]

	If value is not infinite, return value. Otherwise, return sub.

	
tkp.utility.substitute_nan(value, sub=0.0)[source]

	If value is not NaN, return value. Otherwise, return sub.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.utility – miscellaneous utility routines

tkp.utility.containers – Generic container classes

Container classes for the TKP pipeline.

These provide convenient means of marshalling the various types of data –
lightcurves, detections, sources, etc – that the pipeline must handle.

	
class tkp.utility.containers.ExtractionResults[source]

	Container for the results of running source extraction on an
ImageData object

	
class tkp.utility.containers.ObjectContainer[source]

	A container class for objects.

What sort of objects? Well, anything that has a position and we
want to keep lists of, really. So detections (ie, an individual
source measurement on an image), sources (ie all the detections of
a given object in a given image stack) and lightcurves (ie, all
the sources associated with a given object through time).

You probably don’t want to use this on it’s own: see ExtractionResults,
TargetList or source for more useful derived classes.

	
__iadd__(y)[source]

	Not implemented.

	
__imul__(y)[source]

	Not implemented.

	
__mul__(y)[source]

	Not implemented.

	
__rmul__(y)[source]

	Not implemented.

	
__setslice__(section, items)[source]

	Not implemented.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.utility – miscellaneous utility routines

tkp.utility.coordinates – Coordinate routines

General purpose astronomical coordinate handling routines.

	
class tkp.utility.coordinates.CoordSystem[source]

	A container for constant strings representing different coordinate
systems.

	
FK4 = 'B1950 (FK4)'

	

	
FK5 = 'J2000 (FK5)'

	

	
class tkp.utility.coordinates.WCS[source]

	Wrapper around pywcs.WCS.

This is primarily to preserve API compatibility with the earlier,
home-brewed python-wcslib wrapper. It includes:

	A fix for the reference pixel lying at the zenith;

	Raises ValueError if coordinates are invalid.

	
ORIGIN = 1

	

	
WCS_ATTRS = ('crpix', 'cdelt', 'crval', 'ctype', 'cunit', 'crota')

	

	
p2s(pixpos)[source]

	Pixel to Spatial coordinate conversion.

	Parameters:	pixpos (list [http://docs.python.org/library/functions.html#list]) – [x, y] pixel position

	Returns:	ra – Right ascension corresponding to position [x, y]
dec (float): Declination corresponding to position [x, y]

	Return type:	float [http://docs.python.org/library/functions.html#float]

	
s2p(spatialpos)[source]

	Spatial to Pixel coordinate conversion.

	Parameters:	pixpos (list [http://docs.python.org/library/functions.html#list]) – [ra, dec] spatial position

	Returns:	x – X pixel value corresponding to position [ra, dec]
y (float): Y pixel value corresponding to position [ra, dec]

	Return type:	float [http://docs.python.org/library/functions.html#float]

	
tkp.utility.coordinates.alpha(l, m, alpha0, delta0)[source]

	Convert a coordinate in l,m into an coordinate in RA

Keyword arguments:
l,m – direction cosines, given by (offset in cells) x cellsi (radians)
alpha_0, delta_0 – centre of the field

Return value:
alpha – RA in decimal degrees

	
tkp.utility.coordinates.alpha_inflate(theta, decl)[source]

	Compute the ra expansion for a given theta at a given declination

Keyword arguments:
theta, decl are both in decimal degrees.

Return value:
alpha – RA inflation in decimal degrees

For a derivation, see MSR TR 2006 52, Section 2.1
http://research.microsoft.com/apps/pubs/default.aspx?id=64524

	
tkp.utility.coordinates.alphasep(ra1, ra2, dec1, dec2)[source]

	Find the angular separation of two sources in RA, in arcseconds

Keyword arguments:
ra1,dec1 - RA and Dec of the first source, in decimal degrees
ra2,dec2 - RA and Dec of the second source, in decimal degrees

Return value:
angsep - Angular separation, in arcseconds

	
tkp.utility.coordinates.altaz(mjds, ra, dec, lat=52.9088)[source]

	Calculates the azimuth and elevation of source from time and position
on sky. Takes MJD in seconds and ra, dec in degrees. Returns (alt, az) in
degrees.

	
tkp.utility.coordinates.angsep(ra1, dec1, ra2, dec2)[source]

	Find the angular separation of two sources, in arcseconds,
using the proper spherical trig formula

Keyword arguments:
ra1,dec1 - RA and Dec of the first source, in decimal degrees
ra2,dec2 - RA and Dec of the second source, in decimal degrees

Return value:
angsep - Angular separation, in arcseconds

	
tkp.utility.coordinates.convert_coordsystem(ra, dec, insys, outsys)[source]

	Convert RA & dec (given in decimal degrees) between equinoxes.

	
tkp.utility.coordinates.coordsystem(name)[source]

	Given a string, return a constant from class CoordSystem.

	
tkp.utility.coordinates.dectodms(decdegs)[source]

	Convert Declination in decimal degrees format to hours, minutes,
seconds format.

Keyword arguments:
decdegs – Dec. in degrees format

Return value:
dec – list of 3 values, [degrees,minutes,seconds]

	
tkp.utility.coordinates.delta(l, m, delta0)[source]

	Convert a coordinate in l, m into an coordinate in Dec

Keyword arguments:
l, m – direction cosines, given by (offset in cells) x cellsi (radians)
alpha_0, delta_0 – centre of the field

Return value:
delta – Dec in decimal degrees

	
tkp.utility.coordinates.deltasep(dec1, dec2)[source]

	Find the angular separation of two sources in Dec, in arcseconds

Keyword arguments:
dec1 - Dec of the first source, in decimal degrees
dec2 - Dec of the second source, in decimal degrees

Return value:
angsep - Angular separation, in arcseconds

	
tkp.utility.coordinates.dmstodec(decd, decm, decs)[source]

	Convert Dec in degrees, minutes, seconds format to decimal
degrees format.

Keyword arguments:
decd, decm, decs – list of Dec values (d,m,s)

Return value:
decdegs – Dec in decimal degrees

	
tkp.utility.coordinates.eq_to_cart(ra, dec)[source]

	Find the cartesian co-ordinates on the unit sphere given the eq. co-ords.

ra, dec should be in degrees.

	
tkp.utility.coordinates.eq_to_gal(ra, dec)[source]

	Find the Galactic co-ordinates of a source given the equatorial
co-ordinates

Keyword arguments:
(alpha,delta) – RA, Dec in decimal degrees

Return value:
(l,b) – Galactic longitude and latitude, in decimal degrees

	
tkp.utility.coordinates.gal_to_eq(lon_l, lat_b)[source]

	Find the Galactic co-ordinates of a source given the equatorial
co-ordinates

Keyword arguments:
(l, b) – Galactic longitude and latitude, in decimal degrees

Return value:
(alpha, delta) – RA, Dec in decimal degrees

	
tkp.utility.coordinates.hmstora(rah, ram, ras)[source]

	Convert RA in hours, minutes, seconds format to decimal
degrees format.

Keyword arguments:
rah,ram,ras – RA values (h,m,s)

Return value:
radegs – RA in decimal degrees

	
tkp.utility.coordinates.jd2lst(jd, position=None)[source]

	Converts a Julian Date into Local Apparent Sidereal Time in seconds at a
given position. If position is None, we default to the reference position
of CS002.

	Parameters:	
	jd (float [http://docs.python.org/library/functions.html#float]) – Julian Date

	position (casacore measure) – Position for LST calcs.

	
tkp.utility.coordinates.julian2unix(timestamp)[source]

	Convert a modifed julian timestamp (number of seconds since 17 November
1858) to Unix timestamp (number of seconds since 1 January 1970).

	Parameters:	timestamp (numbers.Number [http://docs.python.org/library/numbers.html#numbers.Number]) – Number of seconds since the Unix epoch.

	Returns:	Number of seconds since the modified Julian epoch.

	Return type:	numbers.Number [http://docs.python.org/library/numbers.html#numbers.Number]

	
tkp.utility.coordinates.julian_date(time=None, modified=False)[source]

	Calculate the Julian date at a given timestamp.

	Parameters:	
	time (datetime.datetime [http://docs.python.org/library/datetime.html#datetime.datetime]) – Timestamp to calculate JD for.

	modified (bool [http://docs.python.org/library/functions.html#bool]) – If True, return the Modified Julian Date:
the number of days (including fractions) which have elapsed between
the start of 17 November 1858 AD and the specified time.

	Returns:	Julian date value.

	Return type:	float [http://docs.python.org/library/functions.html#float]

	
tkp.utility.coordinates.l(ra, dec, cra, incr)[source]

	Convert a coordinate in RA,Dec into a direction cosine l

Keyword arguments:
ra,dec – Source location
cra – RA centre of the field
incr – number of degrees per pixel (negative in the case of RA)

Return value:
l – Direction cosine

	
tkp.utility.coordinates.lm_to_radec(ra0, dec0, l, m)[source]

	Find the l direction cosine in a radio image, given an RA and Dec and the
field centre

	
tkp.utility.coordinates.m(ra, dec, cra, cdec, incr)[source]

	Convert a coordinate in RA,Dec into a direction cosine m

Keyword arguments:
ra,dec – Source location
cra,cdec – centre of the field
incr – number of degrees per pixel

Return value:
m – direction cosine

	
tkp.utility.coordinates.mjd2datetime(mjd)[source]

	Convert a Modified Julian Date to datetime via ‘unix time’ representation.

NB ‘unix time’ is defined by the casacore/casacore package.

	
tkp.utility.coordinates.mjd2lst(mjd, position=None)[source]

	Converts a Modified Julian Date into Local Apparent Sidereal Time in
seconds at a given position. If position is None, we default to the
reference position of CS002.

mjd – Modified Julian Date (float, in days)
position – Position (casacore measure)

	
tkp.utility.coordinates.mjds2lst(mjds, position=None)[source]

	As mjd2lst(), but takes an argument in seconds rather than days.

	Parameters:	
	mjds (float [http://docs.python.org/library/functions.html#float]) – Modified Julian Date (in seconds)

	position (casacore measure) – Position for LST calcs

	
tkp.utility.coordinates.propagate_sign(val1, val2, val3)[source]

	casacore (reasonably enough) demands that a minus sign (if required)
comes at the start of the quantity. Thus “-0D30M” rather than “0D-30M”.
Python regards “-0” as equal to “0”; we need to split off a separate sign
field.

If more than one of our inputs is negative, it’s not clear what the user
meant: we raise.

	Parameters:	val1 (float [http://docs.python.org/library/functions.html#float]) – (,val2,val3) input values (hour/min/sec or deg/min/sec)

	Returns:	“+” or “-” string denoting sign,
val1, val2, val3 (numeric) denoting absolute values of inputs.

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

	
tkp.utility.coordinates.radec_to_lmn(ra0, dec0, ra, dec)[source]

	

	
tkp.utility.coordinates.ratohms(radegs)[source]

	Convert RA in decimal degrees format to hours, minutes,
seconds format.

Keyword arguments:
radegs – RA in degrees format

Return value:
ra – tuple of 3 values, [hours,minutes,seconds]

	
tkp.utility.coordinates.sec2days(seconds)[source]

	Seconds to number of days

	
tkp.utility.coordinates.sec2deg(seconds)[source]

	Seconds of time to degrees of arc

	
tkp.utility.coordinates.sec2hms(seconds)[source]

	Seconds to hours, minutes, seconds

	
tkp.utility.coordinates.unix2julian(timestamp)[source]

	Convert a Unix timestamp (number of seconds since 1 January 1970) to a
modified Julian timestamp (number of seconds since 17 November 1858).

	Parameters:	timestamp (numbers.Number [http://docs.python.org/library/numbers.html#numbers.Number]) – Number of seconds since the modified
Julian epoch.

	Returns:	Number of seconds since the Unix epoch.

	Return type:	numbers.Number [http://docs.python.org/library/numbers.html#numbers.Number]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.utility – miscellaneous utility routines

tkp.utility.uncertain – Uncertainty class

	
class tkp.utility.uncertain.Uncertain(value=0.0, error=0.0, *a, **t)[source]

	Represents a numeric value with a known small uncertainty (error,
standard deviation...).

Numeric operators are overloaded to work with other Uncertain or
numeric objects. The uncertainty (error) must be small. Otherwise
the linearization employed here becomes wrong.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.utility – miscellaneous utility routines

tkp.utility.sigmaclip – Generic sigma clipping routine

Generic kappa-sigma clipping routine.

Note: this does not replace the specialized sigma_clip function in
utilities.py

	
tkp.utility.sigmaclip.calcmean(data, errors=None)[source]

	Calculate the mean and the standard deviation of the mean

	
tkp.utility.sigmaclip.calcsigma(data, errors=None, mean=None, axis=None, errors_as_weight=False)[source]

	Calculate the sample standard deviation

	Parameters:	data (numpy.ndarray) – Data to be averaged. No conversion from
eg a list to a numpy.array is done.

Kwargs:

	errors (numpy.ndarray, None): Eerrors for the data. Errors

	needs to be the same shape as data (this is different than
for numpy.average). If you want to use weights instead of
errors as input, set errors_as_weight=True. If not given,
all errors (and thus weights) are assumed to be equal to
1.

	mean (float): Provide mean if you don’t want the mean to be

	calculated for you. Pay careful attention to the shape if
you provide ‘axis’.

	axis (int): Specify axis along which the mean and sigma are

	calculated. If not provided, calculations are done over
the whole array

errors_as_weight (bool): Set to True if errors are weights.

	Returns:	(2-tuple of floats) mean and sigma

	
tkp.utility.sigmaclip.clip(data, mean, sigma, siglow, sighigh, indices=None)[source]

	Perform kappa-sigma clipping of data around mean

	Parameters:	
	data (numpy.ndarray) – N-dimensional array of values

	mean (float [http://docs.python.org/library/functions.html#float]) – value around which to clip (does not have to be the mean)

	sigma (float [http://docs.python.org/library/functions.html#float]) – sigma-value for clipping

	siglow (float [http://docs.python.org/library/functions.html#float]) – lower kappa clipping values

	sighigh (float [http://docs.python.org/library/functions.html#float]) – higher kappa clipping values

Kwargs:

indices (numpy.ndarray): data selection by indices

	Returns:	(numpy.ndarray) indices of non-clipped data

	
tkp.utility.sigmaclip.sigmaclip(data, errors=None, niter=0, siglow=3.0, sighigh=3.0, use_median=False)[source]

	Remove outliers from data which lie more than siglow/sighigh
sample standard deviations from mean.

	Parameters:	data (numpy.ndarray) – Numpy array containing data values.

Kwargs:

	errors (numpy.ndarray, None): Errors associated with the data

	values. If None, unweighted mean and standard deviation
are used in calculations.

	niter (int): Number of iterations to calculate mean & standard

	deviation, and reject outliers, If niter is negative,
iterations will continue until no more clipping occurs or
until abs(‘niter’) is reached, whichever is reached first.

	siglow (float): Kappa multiplier for standard deviation. Std *

	siglow defines the value below which data are rejected.

	sighigh (float): Kappa multiplier for standard deviation. Std *

	sighigh defines the value above which data are rejected.

use_median (bool): Use median of data instead of mean.

	Returns:	(2-tuple) Boolean numpy array of indices indicating which
elements are clipped (False), with the same shape as the
input; number of iterations

	Return type:	tuple [http://docs.python.org/library/functions.html#tuple]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.utility – miscellaneous utility routines

tkp.utility.fits – Some FITS routines

	
tkp.utility.fits.combine(fitsfiles, outputfile, method='average')[source]

	Combine a set of FITS files, taking care of header keywords

	Parameters:	
	fitsfiles (list [http://docs.python.org/library/functions.html#list]) – FITS filenames to combine

	outputfile (str [http://docs.python.org/library/functions.html#str]) – output FITS filename

	method (str [http://docs.python.org/library/functions.html#str]) – average or sum the images

	Returns:	None

	
tkp.utility.fits.convert(casa_image, ms, fits_filename=None)[source]

	Convert a CASA image to FITS, taking care of header keywords

	Parameters:	
	casa_image (casacore.images.image) – CASA image

	ms (casacore.tables.table) – CASA measurement set

	fits_filename (str [http://docs.python.org/library/functions.html#str]) – FITS output filename

	Returns:	None

	
tkp.utility.fits.fix_reference_dec(imagename)[source]

	If the FITS file specified has a reference dec of 90 (or pi/2), make it
infinitesimally less. This works around problems with ill-defined
coordinate systems at the north celestial pole.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

 	tkp.utility – miscellaneous utility routines

tkp.utility.memoize – Memoization decorator

	
class tkp.utility.memoize.Memoize(funct)[source]

	Decorator to cache the results of methods.

Examples in e.g. image.py:

@Memoize
def _grids(self):
 return self.__grids()
grids = property(fget=_grids, fdel=_grids.delete)

	
delete(instance)[source]

	Forget a memoized value

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Developer’s Reference Guide

 	TKP Package API Reference

tkp.main – Top-level pipeline logic flow

tkp.main

Main pipeline logic is defined here.

The science logic is a bit entwined with celery-specific functionality.
This is somewhat unavoidable, since how a task is parallelised (or not) has
implications for the resulting logic.

In general, we try to keep functions elsewhere so this file is succinct.
The exceptions are a couple of celery-specific subroutines.

	
tkp.main.run(job_name, supplied_mon_coords=[])[source]

	

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

Standalone Tools

	PySE
	Preamble

	Introduction

	Command Line Usage

	Output Definition

	Image Metadata Injection
	Preamble

	Configuration

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Standalone Tools

PySE

Preamble

This document briefly describes the means by which the Transients Project
source extraction & measurement code (henceforth pyse.py) may be used to
obtain a list of sources found in a collection of images stored as FITS files.
It does not attempt to act as a complete reference to the TKP codebase.

Introduction

Pyse provides the following capabilities:

	Identification of sources in astronomical images:
	By a simple thresholding technique (ie, locating contiguous islands of
pixels above some multiple of the noise in the image), or

	By making use of a False Detection Rate (FDR) algorithm (Hopkins et al.,
AJ, 123, 1086, 2002 [http://adsabs.harvard.edu/abs/2002AJ....123.1086H]).

	Deblending merged sources.

	Quick estimation of source properties based on the calculation of moments.

	Fitting of identified sources with elliptical Gaussians for accurate
measurement of source properties.

	All measurements made are accompanied by a comprehensive error analysis.

For details of all algorithms implemented, the reader is referred to the PhD
thesis by Spreeuw [http://dare.uva.nl/en/record/340633] (University of
Amsterdam, 2010).

It is worth emphasizing that there are a number of differences compared to
projects such as, for example, BDSM. In particular, the pyse.py code is made
available in the form or Python modules, primarily designed for integration
into a pipeline or other script, rather than for use as an interactive
analysis environment. Further, it is reasonable to assume that astronomical
transients are unresolved, so the code does not attempt to decompose complex,
extended sources into a multiple component model.

Command Line Usage

A script is available to make it possible to test the basic functionality of
the pyse.py code. It does not make all the features listed above available.

Assuming pyse.py exists on your $PATH, it is involed by simply providing
a list of filenames:

$ pyse.py file1.fits ... fileN.fits

For each file specified, a list of sources identified is printed to the
screen.

By default, source extraction is carried out by thresholding: that is,
identifying islands of pixels which exceed a particular multiple of the RMS
noise.

A list of available command line option may be obtained with the
-h/--help option:

Source extraction for radio-synthesis images

usage: pyse.py [-h] [--detection DETECTION] [--analysis ANALYSIS] [--fdr]
 [--alpha ALPHA] [--deblend-thresholds DEBLEND_THRESHOLDS]
 [--grid GRID] [--margin MARGIN] [--radius RADIUS] [--bmaj BMAJ]
 [--bmin BMIN] [--bpa BPA] [--force-beam]
 [--detection-image DETECTION_IMAGE] [--fixed-posns FIXED_POSNS]
 [--fixed-posns-file FIXED_POSNS_FILE] [--ffbox FFBOX]
 [--skymodel] [--csv] [--regions] [--rmsmap] [--sigmap]
 [--residuals] [--islands]
 files [files ...]

	Positional arguments:

	

	
files
	Image files for processing

	Options:

	

	
--detection=10
	Detection threshold

	
--analysis=3
	Analysis threshold

	
--fdr=False
	Use False Detection Rate algorithm

	
--alpha=0.01
	FDR Alpha

	
--deblend-thresholds=0

		Number of deblending subthresholds; 0 to disable

	
--grid=64
	Background grid segment size

	
--margin=0
	Margin applied to each edge of image (in pixels)

	
--radius=0
	Radius of usable portion of image (in pixels)

	
--bmaj
	Set beam: Major axis of beam (deg)

	
--bmin
	Set beam: Minor axis of beam (deg)

	
--bpa
	Set beam: Beam position angle (deg)

	
--force-beam=False

		Force fit axis lengths to beam size

	
--detection-image

		Find islands on different image

	
--fixed-posns
	List of position coordinates to force-fit (decimal degrees, JSON, e.g [[123.4,56.7],[359.9,89.9]]) (Will not perform blind extraction in this mode)

	
--fixed-posns-file

		Path to file containing a list of positions to force-fit (Will not perform blind extraction in this mode)

	
--ffbox=3.0
	Forced fitting positional box size as a multiple of beam width.

	
--skymodel=False

		Generate sky model

	
--csv=False
	Generate csv text file for use in programs such as TopCat

	
--regions=False

		Generate DS9 region file(s)

	
--rmsmap=False
	Generate RMS map

	
--sigmap=False
	Generate significance map

	
--residuals=False

		Generate residual maps

	
--islands=False

		Generate island maps

The --detection argument specifies the multiple of the RMS noise which is
required for detection; ie, setting --detection=5 is equivalent to
requiring pixels used for detecting sources to be at 5 sigma.

The --analysis argument specifies the significance level used when
performing fitting. It should be lower than --detection, such that once
islands have been identified a larger number of pixels is included for the
fitting process.

However, if the --fdr option is given, a False Detection Rate algorithm is
used instead. In this case, an additional --alpha argument may be given to
specify the \(\alpha\) parameter (as defined by Hopkins [http://adsabs.harvard.edu/abs/2002AJ....123.1086H]).

Note that if --fdr is specified, any values given for --detection
and --analysis are not used. Conversely, if --fdr is not specified,
any value given for --alpha is not used.

If the --regions option is specified, a DS9-compatible region file is
output showing the shapes & positions of the sources. It is named according to
the input filename with the extension changed to .reg.

If the --residuals option is specified, a FITS file is produced showing
the residuals left after the fitted sources have been subtraced from the input
image. It is named according to the input filename with .residuals
inserted before the extension.

If the --islands option is specified, a FITS file is produced showing the
Gaussians which have been fitted in the data. It is named according to the
input filename with .islands inserted before the extension. The sum of
this file with that produced by --residuals above should total the input
image.

If the --skymodel option is given, a skymodel file suitable for use with
BBS will be generated. It is named according to the input filename with the
extension changed to .skymodel.

If the --csv option is given, a comma-separated list of sources will be
written to file. It is named according to the input filename with the
extension changed to .csv.

If the --rmsmap option is given, a FITS file is produced showing the noise
map which has been generated during the source-finding process. It is named
according to the input filename with .rms inserted before the extension.

If the --sigmap option is given, a FITS file is produced showing the
significance of each pixel: that is, the background-subtracted image pixel
value divided by the RMS noise at that pixel. It is named according to the
input filename with .sigmap inserted before the extension.

If the --deblend option is specified, pyse.py will attempt to separate
composite sources into multiple components and fit each one independently. The
number of subthresholds used in this process can be specified using the
--deblend-thresholds argument. Refer to Spreeuw’s thesis for a detailed
description of the algorithm used.

--bmaj, --bmin and --bpa specify the shape of the restoring beam.
They are equivalent to the BMAJ, BMIN and BPA FITS headers.
Normally, the code will read the beam shape from the image metadata; however,
if it is not available, it must be manually specified using these arguments or
the process will abort.

When generating background and RMS maps of the image prior to source
detection, it is segmented into a grid. The size of the grid can be specified
using the --grid option. The optimal value is a compromise: it should be
significantly larger than the most extended sources in the image, but small
enough to account for small-scale variation across the image.

Sometimes, it is useful to exclude the edge regions of an image from
processing. The --margin takes an argument given in pixels and masks off
all portions of the image within the given distance of the edge before
processing. The --radius argument is similar, but rather masks off all
parts of the image more than the given distance from the centre. This options
are cumulative.

If the --force-beam option is given, PySE will insist that all sources
have axis lengths and position angles equal to the restoring beam parameters.
This is (might be...) a good assumption if you are observing only point
sources.

If the --detection-image option is specified, PySE will identify sources
and the positions of pixels which comprise them on the deteciton image, but
then use the corresponding pixels on the target images to perform
measurements. Of course, the detection image and the target image(s) must have
the same pixel dimensions. Note that only a single detection image may be
specified, and the same pixels are then used on all target images. Note
further that this --detection-image option is incompatible with --fdr.

It is possible to configure PySE to perform a fit to user-specified positions
in the image _rather_ than “blindly” locating sources and attempting to fit
them. (Note that it is not possible to do both at once: that requires invoking
PySE twice.) This mode may be invoked either by using either of the
--fixed-posns or --fixed-posns-file options. The former directly reads a
list of positions from the command line; the latter accepts a filename, and
reads the positions to fit from that. In both cases, the positions themselves
are provided in JSON [http://json.org/] format, and should consist of a
list of RA, declination _pairs_ given in decimal degrees.

When fitting to a fixed position, a square “box” of pixels is chosen around
the requested position, and the optimization procedure allows the source
position to vary within that box. The size of the box may be changed with the
--ffbox option. Note that this parameter is given in units of the major
axis of the beam.

All of these arguments are optional (with the caveat that the beam shape must
be provided if not included with the image).

Output Definition

The Gaussian fitted to sources is defined as:

\[peak * \exp(\ln(2.0) * ((x \cos(\theta) + y \sin(\theta)) / semiminor)^2 + ((y \cos(\theta) - x \sin(\theta)) / semimajor)^2)\]

In other words:

	\(x\) and \(y\) are the Cartesian coordinates of the centre of the Gaussian;

	\(peak\) is the value at the centre of the Gaussian;

	\(theta\) is the position angle of the major axis measured counterclockwise
from the y axis;

	\(semimajor\) and \(semiminor\) are the half-widths at half-maximum of the
Gaussian along its major and minor axes, respectively.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

 	Standalone Tools

Image Metadata Injection

Preamble

In order to images through the TraP, they are required to provide a
comprehensive set of metadata, including details such as observation time,
frequency and the shape of the restoring beam.

Unfortunately, not all images are produced with all the required metadata
embedded. The metadata injection tool, tkp-inject.py, makes it possible to
annotate images with a user-supplied set of metadata. This can be used to
either replace incorrect metadata provided with an image, or to provide it
from scratch.

Configuration

tkp-inject.py is configured by means of a ConfigParser [http://docs.python.org/library/configparser.html#module-ConfigParser] format file
named inject.cfg in the users job directory. See the documentation on
pipeline configuration for details.

The default inject.cfg file contains the following settings:

[inject]
taustart_ts = "2007-07-20T14:18:09.909001" ; start time
freq_eff = 128613281.25 ; frequency in Hz
freq_bw = 1940917.96875 ; bandwidth in Hz
tau_time = 58141509.156864166 ; integration time
antenna_set = "HBA_DUAL" ; which antenna set is used
subbands = 10
ncore = 41 ; number of core stations
nremote = 0 ; number of remote stations
nintl = 0 ; number of international stations
subbandwidth = 128613281.25
bmaj = 1.9211971282958984
bmin = 1.7578132629394532
bpa = 1.503223674140207
itrf_position_x = 3.8269e+06
itrf_position_y = 460979
itrf_position_z = 5.06466e+06

Any or all of these may be changed by the user to reflect their requirements.

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

Bibliography

Bertin, E. and Arnouts, S. SExtractor: Software for source extraction, A&AS
117, 393–404, 1996.

Scheers, L.H.A. Transient and variable radio sources in the LOFAR sky: An
architecture for a detection framework. PhD thesis, University of Amsterdam,
2011.

	Scheers (2011) in University of Amsterdam Repository [http://dare.uva.nl/en/record/367374]

Spreeuw, J.N. Search and detection of low frequency radio transients. PhD
thesis, University of Amsteram, 2010.

	Spreeuw (2010) in University of Amsterdam Repository [http://dare.uva.nl/en/record/340633]

Swinbank, J.D. et al. The LOFAR Transients Pipeline. In prep.

	Github Repository (members only) [https://github.com/transientskp/trap-paper]

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	LOFAR Transients Pipeline 2.1.0 documentation

Colophon

This document was generated using Sphinx [http://www.sphinx-doc.org] and a
theme based on the Python documentation [http://docs.python.org]. The
latest version is available from the LOFAR Transients KSP documentation
repository [http://docs.transientskp.org/].

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	LOFAR Transients Pipeline 2.1.0 documentation

 Python Module Index

 t

 			

 		
 t	

 	[image: -]
 	
 tkp	

 	
 	
 tkp.accessors	
 Base data accessor utilities

 	
 	
 tkp.accessors.casaimage	

 	
 	
 tkp.accessors.dataaccessor	

 	
 	
 tkp.accessors.detection	
 File type detection

 	
 	
 tkp.accessors.fitsimage	

 	
 	
 tkp.accessors.kat7casaimage	

 	
 	
 tkp.accessors.lofaraccessor	

 	
 	
 tkp.accessors.lofarcasaimage	

 	
 	
 tkp.accessors.lofarfitsimage	

 	
 	
 tkp.config	
 Configuration settings and project / job config file templates.

 	
 	
 tkp.config.parse	

 	
 	
 tkp.db	
 database stuff

 	
 	
 tkp.db.associations	
 Database source association

 	
 	
 tkp.db.configstore	

 	
 	
 tkp.db.consistency	

 	
 	
 tkp.db.database	
 Database connection handling

 	
 	
 tkp.db.dump	

 	
 	
 tkp.db.general	
 general database stuff

 	
 	
 tkp.db.generic	
 generic database stuff

 	
 	
 tkp.db.monitoringlist	
 Database handling monitoring source

 	
 	
 tkp.db.nulldetections	
 Database null detections

 	
 	
 tkp.db.orm	
 orm database stuff

 	
 	
 tkp.db.quality	

 	
 	
 tkp.distribute	

 	
 	
 tkp.main	

 	
 	
 tkp.quality	
 Quality control checks

 	
 	
 tkp.quality.brightsource	

 	
 	
 tkp.quality.restoringbeam	

 	
 	
 tkp.quality.rms	

 	
 	
 tkp.quality.statistics	

 	
 	
 tkp.sourcefinder.deconv	

 	
 	
 tkp.sourcefinder.extract	
 Source extraction routines

 	
 	
 tkp.sourcefinder.fitting	
 The actual fitting routines to fit a single point source

 	
 	
 tkp.sourcefinder.gaussian	
 Definition of the elliptical Gaussian function.

 	
 	
 tkp.sourcefinder.image	
 Sourcefinder Image class and routines for simple image handling

 	
 	
 tkp.sourcefinder.stats	
 Statistics routines specific to radio image source finding

 	
 	
 tkp.sourcefinder.utils	
 Utility routines

 	
 	
 tkp.steps.forced_fitting	

 	
 	
 tkp.steps.misc	

 	
 	
 tkp.steps.persistence	

 	
 	
 tkp.steps.prettyprint	

 	
 	
 tkp.steps.quality	

 	
 	
 tkp.steps.source_extraction	

 	
 	
 tkp.telescope.lofar	

 	
 	
 tkp.telescope.lofar.antennaarrays	

 	
 	
 tkp.telescope.lofar.beam	

 	
 	
 tkp.telescope.lofar.noise	

 	
 	
 tkp.testutil.data	

 	
 	
 tkp.testutil.db_queries	

 	
 	
 tkp.testutil.db_subs	

 	
 	
 tkp.testutil.decorators	

 	
 	
 tkp.testutil.mock	

 	
 	
 tkp.utility	
 Small utility functions that don't fit elsewhere.

 	
 	
 tkp.utility.containers	
 Generic container classes

 	
 	
 tkp.utility.coordinates	
 Coordinate (and date) conversion routines

 	
 	
 tkp.utility.fits	
 Routines to convert to FITS or combine FITS files

 	
 	
 tkp.utility.memoize	
 Memoization decorato

 	
 	
 tkp.utility.sigmaclip	
 Generic sigma clipping routine

 	
 	
 tkp.utility.uncertain	
 Class to store numerical values with uncertainties

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 Navigation

 	
 index

 	
 modules |

 	LOFAR Transients Pipeline 2.1.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

_

 	

 	__getattr__() (tkp.db.orm.DBObject method)

 	__getnewargs__() (tkp.accessors.detection.FitsTest method)

 	

 	(tkp.db.quality.RejectReason method)

 	(tkp.steps.source_extraction.ExtractionResults method)

 	(tkp.testutil.db_subs.ExtractedSourceTuple method)

 	__getstate__() (tkp.accessors.detection.FitsTest method)

 	

 	(tkp.db.quality.RejectReason method)

 	(tkp.steps.source_extraction.ExtractionResults method)

 	(tkp.testutil.db_subs.ExtractedSourceTuple method)

 	__iadd__() (tkp.utility.containers.ObjectContainer method)

 	__imul__() (tkp.utility.containers.ObjectContainer method)

 	__mul__() (tkp.utility.containers.ObjectContainer method)

 	__repr__() (tkp.accessors.detection.FitsTest method)

 	

 	(tkp.db.quality.RejectReason method)

 	(tkp.steps.source_extraction.ExtractionResults method)

 	(tkp.testutil.db_subs.ExtractedSourceTuple method)

 	__rmul__() (tkp.utility.containers.ObjectContainer method)

 	__setslice__() (tkp.utility.containers.ObjectContainer method)

 	_check_meridian_wrap() (in module tkp.db.associations)

 	_delete_1_to_many_inactive_assocskyrgn() (in module tkp.db.associations)

 	_delete_1_to_many_inactive_assocxtrsource() (in module tkp.db.associations)

 	_delete_1_to_many_inactive_newsource() (in module tkp.db.associations)

 	_delete_1_to_many_inactive_runcat_flux() (in module tkp.db.associations)

 	_delete_bad_blind_extractions() (in module tkp.db.associations)

 	_delete_inactive_runcat() (in module tkp.db.associations)

 	_determine_newsource_previous_limits() (in module tkp.db.associations)

 	_empty_temprunningcatalog() (in module tkp.db.associations)

 	_flag_1_to_many_inactive_runcat() (in module tkp.db.associations)

 	_flag_1_to_many_inactive_tempruncat() (in module tkp.db.associations)

 	_flag_many_to_many_tempruncat() (in module tkp.db.associations)

 	

 	_insert_1_to_1_assoc() (in module tkp.db.associations)

 	

 	(in module tkp.db.monitoringlist)

 	(in module tkp.db.nulldetections)

 	_insert_1_to_1_runcat_flux() (in module tkp.db.associations)

 	_insert_1_to_many_assocskyrgn() (in module tkp.db.associations)

 	_insert_1_to_many_basepoint_assocxtrsource() (in module tkp.db.associations)

 	_insert_1_to_many_newsource() (in module tkp.db.associations)

 	_insert_1_to_many_replacement_assocxtrsource() (in module tkp.db.associations)

 	_insert_1_to_many_runcat() (in module tkp.db.associations)

 	_insert_1_to_many_runcat_flux() (in module tkp.db.associations)

 	_insert_new_1_to_1_assoc() (in module tkp.db.monitoringlist)

 	_insert_new_assocxtrsource() (in module tkp.db.associations)

 	_insert_new_runcat() (in module tkp.db.associations)

 	

 	(in module tkp.db.monitoringlist)

 	_insert_new_runcat_flux() (in module tkp.db.associations)

 	

 	(in module tkp.db.monitoringlist)

 	_insert_new_runcat_skyrgn_assocs() (in module tkp.db.associations)

 	_insert_runcat_flux() (in module tkp.db.monitoringlist)

 	_insert_tempruncat() (in module tkp.db.monitoringlist)

 	

 	(in module tkp.db.nulldetections)

 	_insert_temprunningcatalog() (in module tkp.db.associations)

 	_update_1_to_1_runcat() (in module tkp.db.associations)

 	_update_1_to_1_runcat_flux() (in module tkp.db.associations)

 	_update_ff_runcat_extractedsource() (in module tkp.db.associations)

 	_update_monitor_runcats() (in module tkp.db.monitoringlist)

A

 	

 	accessor (tkp.accessors.detection.FitsTest attribute)

 	adict (class in tkp.utility)

 	Aeff_dipole() (in module tkp.telescope.lofar.noise)

 	alpha() (in module tkp.utility.coordinates)

 	alpha_inflate() (in module tkp.utility.coordinates)

 	alphasep() (in module tkp.utility.coordinates)

 	

 	altaz() (in module tkp.utility.coordinates)

 	angsep() (in module tkp.utility.coordinates)

 	associate_extracted_sources() (in module tkp.db.associations)

 	

 	(tkp.db.orm.Image method)

 	associate_ms() (in module tkp.db.monitoringlist)

 	associate_nd() (in module tkp.db.nulldetections)

B

 	

 	backmap (tkp.sourcefinder.image.ImageData attribute)

 	beam (tkp.accessors.dataaccessor.DataAccessor attribute)

 	beam_angle (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	beam_invalid() (in module tkp.quality.restoringbeam)

 	

 	beam_maj (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	beam_min (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	box_slice_about_pixel() (tkp.sourcefinder.image.ImageData static method)

C

 	

 	calcmean() (in module tkp.utility.sigmaclip)

 	calcsigma() (in module tkp.utility.sigmaclip)

 	calculate_beamsize() (in module tkp.sourcefinder.utils)

 	calculate_correlation_lengths() (in module tkp.sourcefinder.utils)

 	calculate_errors() (tkp.sourcefinder.extract.ParamSet method)

 	casa_detect() (in module tkp.accessors.detection)

 	centre_decl (tkp.accessors.dataaccessor.DataAccessor attribute)

 	centre_ra (tkp.accessors.dataaccessor.DataAccessor attribute)

 	check() (in module tkp.db.consistency)

 	check_for_valid_ephemeris() (in module tkp.quality.brightsource)

 	check_job_configs_match() (in module tkp.steps.misc)

 	chisq (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	circular_mask() (in module tkp.sourcefinder.utils)

 	clearcache() (tkp.sourcefinder.image.ImageData method)

 	clip() (in module tkp.quality.statistics)

 	

 	(in module tkp.utility.sigmaclip)

 	

 	close() (tkp.db.database.Database method)

 	columns_from_table() (in module tkp.db.generic)

 	combine() (in module tkp.utility.fits)

 	commit() (in module tkp.db)

 	connect() (in module tkp.db)

 	

 	(tkp.db.database.Database method)

 	connection (tkp.db.database.Database attribute)

 	connection() (in module tkp.db)

 	convert() (in module tkp.utility.fits)

 	convert_coordsystem() (in module tkp.utility.coordinates)

 	convert_db_rows_to_dicts() (in module tkp.db.generic)

 	convert_to_cartesian() (in module tkp.testutil.db_queries)

 	CoordSystem (class in tkp.utility.coordinates)

 	coordsystem() (in module tkp.utility.coordinates)

 	create_dataset() (in module tkp.steps.persistence)

D

 	

 	data (tkp.accessors.dataaccessor.DataAccessor attribute)

 	

 	(tkp.sourcefinder.image.ImageData attribute)

 	data_bgsubbed (tkp.sourcefinder.image.ImageData attribute)

 	DataAccessor (class in tkp.accessors.dataaccessor)

 	Database (class in tkp.db.database)

 	DataSet (class in tkp.db.orm)

 	DBExceptions (class in tkp.db.database)

 	DBObject (class in tkp.db.orm)

 	deblend() (tkp.sourcefinder.extract.Island method)

 	dec (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	dec_fit_err (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	deconv() (in module tkp.sourcefinder.deconv)

 	deconvolve_from_clean_beam() (tkp.sourcefinder.extract.ParamSet method)

 	dectodms() (in module tkp.utility.coordinates)

 	degrees2pixels() (tkp.accessors.dataaccessor.DataAccessor static method)

 	

 	delete() (tkp.utility.memoize.Memoize method)

 	delete_test_database() (in module tkp.testutil.db_subs)

 	delta() (in module tkp.utility.coordinates)

 	deltasep() (in module tkp.utility.coordinates)

 	deRuiter_radius() (in module tkp.testutil.db_subs)

 	desc (tkp.db.quality.RejectReason attribute)

 	detect() (in module tkp.accessors.detection)

 	Detection (class in tkp.sourcefinder.extract)

 	distance_from() (tkp.sourcefinder.extract.Detection method)

 	dmstodec() (in module tkp.utility.coordinates)

 	dump_db() (in module tkp.db.dump)

 	dump_monetdb() (in module tkp.db.dump)

 	dump_pg() (in module tkp.db.dump)

E

 	

 	eq_to_cart() (in module tkp.utility.coordinates)

 	eq_to_gal() (in module tkp.utility.coordinates)

 	error_radius (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	ew_sys_err (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	example_dbimage_data_dict() (in module tkp.testutil.db_subs)

 	example_extractedsource_tuple() (in module tkp.testutil.db_subs)

 	execute() (in module tkp.db)

 	

 	extract() (tkp.sourcefinder.image.ImageData method)

 	extract_metadata() (tkp.accessors.dataaccessor.DataAccessor method)

 	extract_metadatas() (in module tkp.steps.persistence)

 	extract_sources() (in module tkp.steps.source_extraction)

 	ExtractedSource (class in tkp.db.orm)

 	ExtractedSourceTuple (class in tkp.testutil.db_subs)

 	ExtractionResults (class in tkp.steps.source_extraction)

 	

 	(class in tkp.utility.containers)

F

 	

 	fd_extract() (tkp.sourcefinder.image.ImageData method)

 	fetch_config() (in module tkp.db.configstore)

 	fit() (tkp.sourcefinder.extract.Island method)

 	fit_fixed_positions() (tkp.sourcefinder.image.ImageData method)

 	fit_to_point() (tkp.sourcefinder.image.ImageData method)

 	fit_type (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	fitgaussian() (in module tkp.sourcefinder.fitting)

 	fits_detect() (in module tkp.accessors.detection)

 	FitsTest (class in tkp.accessors.detection)

 	fix_reference_dec() (in module tkp.utility.fits)

 	FK4 (tkp.utility.coordinates.CoordSystem attribute)

 	

 	FK5 (tkp.utility.coordinates.CoordSystem attribute)

 	flatten() (in module tkp.sourcefinder.utils)

 	flux (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	flux_at_pixel() (tkp.sourcefinder.image.ImageData method)

 	flux_err (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	fov() (in module tkp.telescope.lofar.beam)

 	freq_bw (tkp.accessors.dataaccessor.DataAccessor attribute)

 	freq_eff (tkp.accessors.dataaccessor.DataAccessor attribute)

 	frequency_bands() (tkp.db.orm.DataSet method)

 	fudge_max_pix() (in module tkp.sourcefinder.utils)

 	fwhm() (in module tkp.telescope.lofar.beam)

G

 	

 	gal_to_eq() (in module tkp.utility.coordinates)

 	gaussian() (in module tkp.sourcefinder.gaussian)

 	generate_result_maps() (in module tkp.sourcefinder.utils)

 	generate_subthresholds() (in module tkp.sourcefinder.utils)

 	generate_timespaced_dbimages_data() (in module tkp.testutil.db_subs)

 	get_assoc_entries() (in module tkp.testutil.db_queries)

 	get_database_config() (in module tkp.config)

 	get_db_rows_as_dicts() (in module tkp.db.generic)

 	

 	get_error_radius() (in module tkp.sourcefinder.utils)

 	get_monitor_entries() (in module tkp.db.monitoringlist)

 	get_newsources_for_dataset() (in module tkp.testutil.db_subs)

 	get_nulldetections() (in module tkp.db.nulldetections)

 	get_sources_filtered_by_final_variability() (in module tkp.testutil.db_subs)

 	goodness_of_fit() (in module tkp.sourcefinder.fitting)

 	grids (tkp.sourcefinder.image.ImageData attribute)

 	group_per_timestep() (in module tkp.steps.misc)

H

 	

 	high_ram_requirements() (in module tkp.testutil.decorators)

 	highly_elliptical() (in module tkp.quality.restoringbeam)

 	

 	hmstora() (in module tkp.utility.coordinates)

I

 	

 	id (tkp.db.orm.DataSet attribute)

 	

 	(tkp.db.orm.DBObject attribute)

 	(tkp.db.orm.Image attribute)

 	(tkp.db.quality.RejectReason attribute)

 	Image (class in tkp.db.orm)

 	image_to_mongodb() (in module tkp.steps.persistence)

 	ImageData (class in tkp.sourcefinder.image)

 	infinite() (in module tkp.quality.restoringbeam)

 	initialize_pipeline_config() (in module tkp.config)

 	insert_dataset() (in module tkp.db.general)

 	insert_extracted_sources() (in module tkp.db.general)

 	

 	(tkp.db.orm.Image method)

 	insert_image() (in module tkp.db.general)

 	

 	insert_image_and_simulated_sources() (in module tkp.testutil.db_subs)

 	insert_monitor_positions() (in module tkp.db.general)

 	is_bright_source_near() (in module tkp.quality.brightsource)

 	iscasa() (in module tkp.accessors.detection)

 	isconsistent() (in module tkp.db.consistency)

 	isfits() (in module tkp.accessors.detection)

 	Island (class in tkp.sourcefinder.extract)

 	islofarhdf5() (in module tkp.accessors.detection)

 	isrejected() (in module tkp.db.quality)

J

 	

 	jd2lst() (in module tkp.utility.coordinates)

 	julian2unix() (in module tkp.utility.coordinates)

 	

 	julian_date() (in module tkp.utility.coordinates)

K

 	

 	keys() (tkp.sourcefinder.extract.ParamSet method)

L

 	

 	l() (in module tkp.utility.coordinates)

 	label_islands() (tkp.sourcefinder.image.ImageData method)

 	lightcurve() (in module tkp.db.general)

 	

 	(tkp.db.orm.ExtractedSource method)

 	lightcurve_metrics() (in module tkp.testutil.db_subs)

 	

 	lm_to_radec() (in module tkp.utility.coordinates)

 	load_job_config() (in module tkp.steps.misc)

 	loads_timestamp_w_microseconds() (in module tkp.config.parse)

 	LofarAccessor (class in tkp.accessors.lofaraccessor)

M

 	

 	m() (in module tkp.utility.coordinates)

 	maximum_pixel_method_variance() (in module tkp.sourcefinder.utils)

 	Memoize (class in tkp.utility.memoize)

 	mjd2datetime() (in module tkp.utility.coordinates)

 	

 	mjd2lst() (in module tkp.utility.coordinates)

 	mjds2lst() (in module tkp.utility.coordinates)

 	MockSource (class in tkp.testutil.db_subs)

 	moments() (in module tkp.sourcefinder.fitting)

N

 	

 	node_steps() (in module tkp.steps.persistence)

 	noise() (tkp.sourcefinder.extract.Island method)

 	noise_level() (in module tkp.telescope.lofar.noise)

 	

 	not_full_fieldofview() (in module tkp.quality.restoringbeam)

 	ns_sys_err (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

O

 	

 	ObjectContainer (class in tkp.utility.containers)

 	open() (in module tkp.accessors)

 	

 	ORIGIN (tkp.utility.coordinates.WCS attribute)

 	oversampled() (in module tkp.quality.restoringbeam)

P

 	

 	p2s() (tkp.utility.coordinates.WCS method)

 	ParamSet (class in tkp.sourcefinder.extract)

 	parse_antennafile() (in module tkp.telescope.lofar.antennaarrays)

 	parse_pixelsize() (tkp.accessors.dataaccessor.DataAccessor method)

 	parse_to_dict() (in module tkp.config.parse)

 	peak (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	peak_err (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	

 	perform_forced_fits() (in module tkp.steps.forced_fitting)

 	pixelsize (tkp.accessors.dataaccessor.DataAccessor attribute)

 	pixmax (tkp.sourcefinder.image.ImageData attribute)

 	pixmin (tkp.sourcefinder.image.ImageData attribute)

 	pretty_print() (in module tkp.telescope.lofar.antennaarrays)

 	propagate_sign() (in module tkp.utility.coordinates)

R

 	

 	ra (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	ra_fit_err (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	radec_to_lmn() (in module tkp.utility.coordinates)

 	ratohms() (in module tkp.utility.coordinates)

 	reduced_chisq (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	reject() (in module tkp.db.quality)

 	reject_check() (in module tkp.steps.quality)

 	reject_image() (in module tkp.steps.quality)

 	RejectReason (class in tkp.db.quality)

 	requires_test_db_managed() (in module tkp.testutil.decorators)

 	

 	reverse_se() (tkp.sourcefinder.image.ImageData method)

 	rms() (in module tkp.quality.statistics)

 	rms_invalid() (in module tkp.quality.rms)

 	rms_max (tkp.steps.source_extraction.ExtractionResults attribute)

 	rms_min (tkp.steps.source_extraction.ExtractionResults attribute)

 	rms_with_clipped_subregion() (in module tkp.quality.statistics)

 	rmsmap (tkp.sourcefinder.image.ImageData attribute)

 	rollback() (in module tkp.db)

 	run() (in module tkp.main)

 	runcat_entries() (tkp.db.orm.DataSet method)

S

 	

 	s2p() (tkp.utility.coordinates.WCS method)

 	sanitize_db_inputs() (in module tkp.db.database)

 	sec2days() (in module tkp.utility.coordinates)

 	sec2deg() (in module tkp.utility.coordinates)

 	sec2hms() (in module tkp.utility.coordinates)

 	serialize() (tkp.sourcefinder.extract.Detection method)

 	set_columns_for_table() (in module tkp.db.generic)

 	setup_log_file() (in module tkp.steps.misc)

 	shortest_distances() (in module tkp.telescope.lofar.antennaarrays)

 	sig() (tkp.sourcefinder.extract.Island method)

 	sigma (tkp.testutil.db_subs.ExtractedSourceTuple attribute)

 	sigma_clip() (in module tkp.sourcefinder.stats)

 	

 	sigmaclip() (in module tkp.utility.sigmaclip)

 	simulate_extraction() (tkp.testutil.db_subs.MockSource method)

 	source_profile_and_errors() (in module tkp.sourcefinder.extract)

 	sourcefinder_image_from_accessor() (in module tkp.accessors)

 	sources (tkp.steps.source_extraction.ExtractionResults attribute)

 	store_config() (in module tkp.db.configstore)

 	store_images() (in module tkp.steps.persistence)

 	subregion() (in module tkp.quality.statistics)

 	substitute_inf() (in module tkp.utility)

 	substitute_nan() (in module tkp.utility)

 	system_sensitivity() (in module tkp.telescope.lofar.noise)

T

 	

 	tau_time (tkp.accessors.dataaccessor.DataAccessor attribute)

 	taustart_ts (tkp.accessors.dataaccessor.DataAccessor attribute)

 	test (tkp.accessors.detection.FitsTest attribute)

 	threshold() (tkp.sourcefinder.extract.Island method)

 	tkp.accessors (module)

 	tkp.accessors.casaimage (module)

 	tkp.accessors.casaimage.CasaImage (class in tkp.accessors.casaimage)

 	tkp.accessors.dataaccessor (module)

 	tkp.accessors.detection (module)

 	tkp.accessors.fitsimage (module)

 	tkp.accessors.fitsimage.FitsImage (class in tkp.accessors.fitsimage)

 	tkp.accessors.kat7casaimage (module)

 	tkp.accessors.kat7casaimage.Kat7CasaImage (class in tkp.accessors.kat7casaimage)

 	tkp.accessors.lofaraccessor (module)

 	tkp.accessors.lofarcasaimage (module)

 	tkp.accessors.lofarcasaimage.LofarCasaImage (class in tkp.accessors.lofarcasaimage)

 	tkp.accessors.lofarfitsimage (module)

 	tkp.accessors.lofarfitsimage.LofarFitsImage (class in tkp.accessors.lofarfitsimage)

 	tkp.config (module)

 	tkp.config.parse (module)

 	tkp.db (module)

 	tkp.db.associations (module)

 	tkp.db.configstore (module)

 	tkp.db.consistency (module)

 	tkp.db.database (module)

 	tkp.db.dump (module)

 	tkp.db.general (module)

 	tkp.db.generic (module)

 	tkp.db.monitoringlist (module)

 	tkp.db.nulldetections (module)

 	tkp.db.orm (module)

 	tkp.db.quality (module)

 	tkp.distribute (module)

 	tkp.main (module)

 	

 	tkp.quality (module)

 	tkp.quality.brightsource (module)

 	tkp.quality.restoringbeam (module)

 	tkp.quality.rms (module)

 	tkp.quality.statistics (module)

 	tkp.sourcefinder.deconv (module)

 	tkp.sourcefinder.extract (module)

 	tkp.sourcefinder.fitting (module)

 	tkp.sourcefinder.gaussian (module)

 	tkp.sourcefinder.image (module)

 	tkp.sourcefinder.stats (module)

 	tkp.sourcefinder.utils (module)

 	tkp.steps.forced_fitting (module)

 	tkp.steps.misc (module)

 	tkp.steps.persistence (module)

 	tkp.steps.prettyprint (module)

 	tkp.steps.quality (module)

 	tkp.steps.source_extraction (module)

 	tkp.telescope.lofar (module)

 	tkp.telescope.lofar.antennaarrays (module)

 	tkp.telescope.lofar.beam (module)

 	tkp.telescope.lofar.noise (module)

 	tkp.testutil.data (module)

 	tkp.testutil.db_queries (module)

 	tkp.testutil.db_subs (module)

 	tkp.testutil.decorators (module)

 	tkp.testutil.mock (module)

 	tkp.utility (module)

 	tkp.utility.containers (module)

 	tkp.utility.coordinates (module)

 	tkp.utility.fits (module)

 	tkp.utility.memoize (module)

 	tkp.utility.sigmaclip (module)

 	tkp.utility.uncertain (module)

U

 	

 	unbiased_sigma() (in module tkp.sourcefinder.stats)

 	Uncertain (class in tkp.utility.uncertain)

 	undersampled() (in module tkp.quality.restoringbeam)

 	unix2julian() (in module tkp.utility.coordinates)

 	unreject() (in module tkp.db.quality)

 	update() (tkp.db.orm.DBObject method)

 	

 	update_dataset_process_end_ts() (in module tkp.db.general)

 	update_images() (tkp.db.orm.DataSet method)

 	update_rejected() (tkp.db.orm.Image method)

 	update_sources() (tkp.db.orm.Image method)

 	url (tkp.accessors.dataaccessor.DataAccessor attribute)

V

 	

 	vacuum() (tkp.db.database.Database method)

 	value_at_dtime() (tkp.testutil.db_subs.MockSource method)

 	

 	var_helper() (in module tkp.sourcefinder.stats)

W

 	

 	WCS (class in tkp.utility.coordinates)

 	wcs (tkp.accessors.dataaccessor.DataAccessor attribute)

 	

 	WCS_ATTRS (tkp.utility.coordinates.WCS attribute)

 	writefits() (in module tkp.accessors)

X

 	

 	xdim (tkp.sourcefinder.image.ImageData attribute)

Y

 	

 	ydim (tkp.sourcefinder.image.ImageData attribute)

 Copyright 2006—2015, LOFAR Transients Key Science Project.

 _modules/tkp/db.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.db

import logging
import numpy
from tkp.db.database import Database, sanitize_db_inputs
from tkp.db.orm import DataSet, Image, ExtractedSource

logger = logging.getLogger(__name__)

[docs]def execute(query, parameters={}, commit=False):
 """
 A generic wrapper for doing any query to the database

 :param query: the query string
 :param parameters: The query parameters. These will be converted and escaped.
 :param commit: should a commit be performed afterwards, boolean

 :returns: a database cursor object
 """
 #logger.info('executing query\n%s' % query % parameters)
 database = Database()
 cursor = database.connection.cursor()
 try:
 cursor.execute(query, sanitize_db_inputs(parameters))
 if commit:
 database.connection.commit()
 except database.connection.Error as e:
 logger.error("Query failed: %s. Query: %s." % (e, query % parameters))
 raise
 except Exception as e:
 logger.error("Big problem here: %s" % e)
 raise
 return cursor

[docs]def commit():
 """
 A generic wrapper to commit a query transaction

 It saves the changes involved by a transaction
 """
 database = Database()
 return database.connection.commit()

[docs]def rollback():
 """
 A generic wrapper to rollback a query transaction

 Undo changes involved by a transaction that have not been saved
 """
 database = Database()
 return database.connection.rollback()

[docs]def connect():
 """
 A generic wrapper to connect to the configured database
 """
 database = Database()
 return database.connect()

[docs]def connection():
 """
 A generic wrapper to create a connection to the database if
 it does not exist
 """
 database = Database()
 return database.connection

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/config/parse.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.config »

 Source code for tkp.config.parse

"""Utilities for loading parameters from config files, with automatic type
conversion."""

import ast
import logging
import datetime
from tkp.utility import adict

logger = logging.getLogger(__name__)

Use prefix loads / dumps for 'load string', 'dump string', a la JSON.
dt_w_microsecond_format = '%Y-%m-%dT%H:%M:%S.%f'

[docs]def loads_timestamp_w_microseconds(dt_str):
 """Loads and returns timestamp with microsecond precission"""
 return datetime.datetime.strptime(dt_str, dt_w_microsecond_format)

loads_methods = (ast.literal_eval,
 loads_timestamp_w_microseconds)

[docs]def parse_to_dict(config):
 """Loads the ConfigParser object as a nested dictionary.

 Automatically converts strings representing ints and floats to their
 respective types, through the magic of ast.literal_eval.
 This functionality is extensible via the loads_methods list.
 Each loads (load string) method is tested in turn to see if it
 throws an exception. If all throw, we assume the value is meant to be
 string.

 Any values that you don't want to be converted should simply be
 surrounded with quote marks in the parset - then ast.literal_eval
 knows to load it as a string.

 Args:
 config: A ConfigParser object.

 Returns:
 Nested dict {sections -> keys -> values } representing parsed params.

 """
 pars = adict()
 #'DEFAULT' section is not listed by ``sections()``,
 # but we sometimes (ab)use it.
 sections = config.sections()
 if len(config.items('DEFAULT')):
 sections.append('DEFAULT')

 for section_name in sections:
 if section_name not in pars:
 pars[section_name] = adict()
 for k, rawval in config.items(section_name):
 val = rawval
 for func in loads_methods:
 try:
 val = func(rawval)
 break # Drop out of loop if exception not thrown
 except (ValueError, SyntaxError):
 pass # Try the next method
 if val == rawval:
 logger.debug("Parsing section: [%s]\n"
 "Could not parse key-value pair:\n%s = %s\n"
 "-assuming string value",
 section_name, k, rawval)
 pars[section_name][k] = val

 return pars

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/config.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.config

from __future__ import absolute_import

from ConfigParser import SafeConfigParser
import datetime
import getpass
import logging
import os

from tkp.config.parse import parse_to_dict, dt_w_microsecond_format
import tkp.db

logger = logging.getLogger(__name__)

[docs]def initialize_pipeline_config(pipe_cfg_file, job_name):
 """
 Initializes the default variables and loads the ConfigParser file.

 Sets defaults for start_time, job_name and cwd; these can then be used
 via variable substitution in other config values.

 """
 start_time = datetime.datetime.utcnow().replace(microsecond=0).isoformat()
 config = SafeConfigParser({
 "job_name": job_name,
 "start_time": start_time,
 "cwd": os.getcwd(),
 })
 #NB we force sensible errors by attempting to open the pipeline.cfg file:
 config.read(pipe_cfg_file)
 return parse_to_dict(config)

[docs]def get_database_config(config_passed=None, apply=False):
 """
 Determine database config and (optionally) use to set up the Database.

 Determines a database configuration using the settings
 defined in a dict (if supplied) and possibly overridden by
 environment variables.
 The config resulting from the combination of defaults, supplied dict,
 and environment variables is returned as a dict. If apply==True,
 the Database singleton is configured using these resulting settings.

 The following environment variables are recognized, and take priority:

 - TKP_DBENGINE
 - TKP_DBNAME
 - TKP_DBUSER
 - TKP_DBPASSWORD
 - TKP_DBHOST
 - TKP_DBPORT

 :param config_passed: Dict of db settings.
 Relevant keys: (engine, database, user, password, host, port,
 passphrase)
 :param apply: apply settings (configure db connection) or not
 :return: Dict containing the resulting combined settings
 (resulting from defaults, ``config_passed`` and possibly environment
 variables.)
 """
 # Default values
 combined_config = {
 'engine': None, 'database': None, 'user': getpass.getuser(),
 'password': None, 'host': "localhost", 'port': None, 'passphrase': None
 }

 if config_passed:
 combined_config.update(config_passed)

 # The environment variables take precedence
 for env_var, key in [
 ("TKP_DBNAME", 'database'),
 ("TKP_DBUSER", 'user'),
 ("TKP_DBENGINE", 'engine'),
 ("TKP_DBPASSWORD", "password"),
 ("TKP_DBPASSPHRASE", "passphrase"),
 ("TKP_DBHOST", "host"),
 ("TKP_DBPORT", "port")
]:
 if env_var in os.environ:
 combined_config[key] = os.environ.get(env_var)

 # If only the username is defined, use that as a
 # default for the database name and password.
 if combined_config['user'] and not combined_config['database']:
 combined_config['database'] = combined_config['user']
 if combined_config['user'] and not combined_config['password']:
 combined_config['password'] = combined_config['user']

 if not combined_config['port']:
 if combined_config['engine'] == "monetdb":
 combined_config['port'] = 50000
 if combined_config['engine'] == "postgresql":
 combined_config['port'] = 5432
 else:
 # Port is always an integer
 combined_config['port'] = int(combined_config['port'])

 # Optionally, initiate a db connection with the settings determined
 if apply:
 tkp.db.Database(**combined_config)
 tkp.db.execute('select 1')
 return combined_config

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/accessors.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.accessors

"""
Data accessors.

These can be used to populate ImageData objects based on some data source
(FITS file, array in memory... etc).
"""

import os
import pyfits
from tkp.db.orm import Image as DBImage
from tkp.sourcefinder.image import ImageData
from tkp.accessors.dataaccessor import DataAccessor
from tkp.accessors.fitsimage import FitsImage
from tkp.accessors.casaimage import CasaImage
from tkp.accessors.lofarfitsimage import LofarFitsImage
from tkp.accessors.lofarcasaimage import LofarCasaImage
import tkp.accessors.detection

[docs]def sourcefinder_image_from_accessor(image, **args):
 """Create a source finder ImageData object from an image 'accessor'

 Args:

 - image (DataAccessor): FITS/AIPS/HDF5 image available through
 an accessor.

 Returns:
 (:class:`tkp.sourcefinder.image.ImageData`): a source finder image.
 """
 image = ImageData(image.data, image.beam, image.wcs, **args)
 return image

[docs]def writefits(data, filename, header = {}):
 """
 Dump a NumPy array to a FITS file.

 Key/value pairs for the FITS header can be supplied in the optional
 header argument as a dictionary.
 """
 if header.__class__.__name__ == 'Header':
 pyfits.writeto(filename, data.transpose(), header)
 else:
 hdu = pyfits.PrimaryHDU(data.transpose())
 for key in header.iterkeys():
 hdu.header.update(key, header[key])
 hdu.writeto(filename)

[docs]def open(path, *args, **kwargs):
 """
 Returns an accessor object (if available) for the file or directory 'path'.

 We try all the possible accessors in order from most specific to least
 specific. That is, if possible, we prefer an accessor providing
 LofarAccessor to one providing DataAccessor, but we accept the latter if
 that's the only possible match.

 Will raise an exception if something went wrong or no matching accessor
 class is found.
 """
 if not os.access(path, os.F_OK):
 raise IOError("%s does not exist!" % path)
 if not os.access(path, os.R_OK):
 raise IOError("Don't have permission to read %s!" % path)
 Accessor = tkp.accessors.detection.detect(path)
 if not Accessor:
 raise IOError("no accessor found for %s" % path)
 return Accessor(path, *args, **kwargs)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_static/comment-bright.png

_static/up.png

_static/lofar.png

_modules/tkp/utility/memoize.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.utility »

 Source code for tkp.utility.memoize

#
LOFAR Transients Key Project
#
Memoization.
#
from weakref import WeakKeyDictionary
from functools import update_wrapper

[docs]class Memoize(object):
 """Decorator to cache the results of methods.

 Examples in e.g. image.py::

 @Memoize
 def _grids(self):
 return self.__grids()
 grids = property(fget=_grids, fdel=_grids.delete)

 """

 def __init__(self, funct):
 self.funct = funct
 self.memo = WeakKeyDictionary()
 update_wrapper(self, self.funct)

 def __call__(self, instance):
 if instance not in self.memo:
 self.memo[instance] = self.funct(instance)
 return self.memo[instance]

[docs] def delete(self, instance):
 """Forget a memoized value"""
 try:
 del(self.memo[instance])
 except KeyError:
 pass

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_static/plus.png

_modules/tkp/utility/uncertain.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.utility »

 Source code for tkp.utility.uncertain

#
LOFAR Transients Key Project
#
Uncertain quantities.
Based on:
(c) Robert Jordens <jordens@debian.org>
Made available freely under the Python license
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/535164
import math

[docs]class Uncertain(object):
 """Represents a numeric value with a known small uncertainty (error,
 standard deviation...).

 Numeric operators are overloaded to work with other Uncertain or
 numeric objects. The uncertainty (error) must be small. Otherwise
 the linearization employed here becomes wrong.
 """

 def __init__(self, value=0., error=0., *a, **t):
 self.value = value
 self.error = abs(error)
 super(Uncertain, self).__init__(*a, **t)

 def __str__(self):
 return "%g+-%g" % (self.value, self.error)

 def __repr__(self):
 return "Uncertain(%s, %s)" % (self.value, self.error)

 def __float__(self):
 return float(self.value)

 def assign(self, other):
 if isinstance(other, Uncertain):
 self.value = other.value
 self.error = other.error
 else:
 self.value = other
 self.error = 0.

 def __abs__(self):
 return Uncertain(abs(self.value), self.error)

 def __add__(self, other):
 if isinstance(other, Uncertain):
 v = self.value + other.value
 e = (self.error**2 + other.error**2)**.5
 return Uncertain(v, e)
 else:
 return Uncertain(self.value + other, self.error)

 def __radd__(self, other):
 return self + other # __add__

 def __sub__(self, other):
 return self + (-other) # other.__neg__ and __add__

 def __rsub__(self, other):
 return -self + other # __neg__ and __add__

 def __mul__(self, other):
 if isinstance(other, Uncertain):
 v = self.value * other.value
 e = ((self.error * other.value)**2 +
 (other.error * self.value)**2)**.5
 return Uncertain(v, e)
 else:
 return Uncertain(self.value * other, self.error * other)

 def __rmul__(self, other):
 return self * other # __mul__

 def __neg__(self):
 return self * -1 # __mul__

 def __pos__(self):
 return self

 def __div__(self, other):
 return self * (1. / other) # other.__div__ and __mul__

 def __rdiv__(self, other):
 return (self / other)**-1. # __pow__ and __div__

 def __pow__(self, other):
 if isinstance(other, Uncertain):
 v = self.value**other.value
 e = ((self.error * other.value *
 self.value**(other.value - 1.0))**2 +
 (other.error * math.log(self.value) *
 self.value**other.value)**2
)**.5
 return Uncertain(v, e)
 else:
 return Uncertain(self.value**other,
 self.error * other * self.value**(other - 1))

 def __rpow__(self, other):
 assert not isinstance(other, Uncertain)
 # otherwise other.__pow__ would have been called
 return Uncertain(other**self.value,
 self.error * math.log(other) * other**self.value)

 def __cmp__(self, compare):
 try:
 return cmp(self.value, compare.value)
 except AttributeError:
 return cmp(self.value, compare)

 def exp(self):
 return math.e**self

 def log(self):
 return Uncertain(math.log(self.value), self.error / self.value)

 def max(self):
 return self.value + self.error

 def min(self):
 return self.value - self.error

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/minus.png

_modules/tkp/main.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.main

"""
Main pipeline logic is defined here.

The science logic is a bit entwined with celery-specific functionality.
This is somewhat unavoidable, since how a task is parallelised (or not) has
implications for the resulting logic.

In general, we try to keep functions elsewhere so this file is succinct.
The exceptions are a couple of celery-specific subroutines.
"""
import imp
import logging
import os
from tkp import steps
from tkp.config import initialize_pipeline_config, get_database_config
from tkp.db import consistency as dbconsistency
from tkp.db import Image
from tkp.db import general as dbgen
from tkp.db import associations as dbass
from tkp.distribute import Runner
from tkp.steps.misc import (load_job_config, dump_configs_to_logdir,
 check_job_configs_match,
 setup_log_file, dump_database_backup,
 group_per_timestep
)
from tkp.db.configstore import store_config, fetch_config
from tkp.steps.persistence import create_dataset, store_images
import tkp.steps.forced_fitting as steps_ff

logger = logging.getLogger(__name__)

[docs]def run(job_name, supplied_mon_coords=[]):
 pipe_config = initialize_pipeline_config(
 os.path.join(os.getcwd(), "pipeline.cfg"),
 job_name)

 # get parallelise props. Defaults to multiproc with autodetect num cores
 parallelise = pipe_config.get('parallelise', {})
 distributor = os.environ.get('TKP_PARALLELISE', parallelise.get('method',
 'multiproc'))
 runner = Runner(distributor=distributor,
 cores=parallelise.get('cores', 0))

 debug = pipe_config.logging.debug
 #Setup logfile before we do anything else
 log_dir = pipe_config.logging.log_dir
 setup_log_file(log_dir, debug)

 job_dir = pipe_config.DEFAULT.job_directory
 if not os.access(job_dir, os.X_OK):
 msg = "can't access job folder %s" % job_dir
 logger.error(msg)
 raise IOError(msg)
 logger.info("Job dir: %s", job_dir)

 db_config = get_database_config(pipe_config.database, apply=True)
 dump_database_backup(db_config, job_dir)

 job_config = load_job_config(pipe_config)
 se_parset = job_config.source_extraction
 deruiter_radius = job_config.association.deruiter_radius
 beamwidths_limit = job_config.association.beamwidths_limit
 new_src_sigma = job_config.transient_search.new_source_sigma_margin

 all_images = imp.load_source('images_to_process',
 os.path.join(job_dir,
 'images_to_process.py')).images

 logger.info("dataset %s contains %s images" % (job_name, len(all_images)))

 logger.info("performing database consistency check")
 if not dbconsistency.check():
 logger.error("Inconsistent database found; aborting")
 return 1

 dataset_id = create_dataset(job_config.persistence.dataset_id,
 job_config.persistence.description)

 if job_config.persistence.dataset_id == -1:
 store_config(job_config, dataset_id) # new data set
 if supplied_mon_coords:
 dbgen.insert_monitor_positions(dataset_id,supplied_mon_coords)
 else:
 job_config_from_db = fetch_config(dataset_id) # existing data set
 if check_job_configs_match(job_config, job_config_from_db):
 logger.debug("Job configs from file / database match OK.")
 else:
 logger.warn("Job config file has changed since dataset was "
 "first loaded into database. ")
 logger.warn("Using job config settings loaded from database, see "
 "log dir for details")
 job_config = job_config_from_db
 if supplied_mon_coords:
 logger.warn("Monitor positions supplied will be ignored. "
 "(Previous dataset specified)")

 dump_configs_to_logdir(log_dir, job_config, pipe_config)

 logger.info("performing persistence step")
 image_cache_params = pipe_config.image_cache
 imgs = [[img] for img in all_images]

 rms_est_sigma = job_config.persistence.rms_est_sigma
 rms_est_fraction = job_config.persistence.rms_est_fraction
 metadatas = runner.map("persistence_node_step", imgs,
 [image_cache_params, rms_est_sigma, rms_est_fraction])
 metadatas = [m[0] for m in metadatas if m]

 logger.info("Storing images")
 image_ids = store_images(metadatas,
 job_config.source_extraction.extraction_radius_pix,
 dataset_id)

 db_images = [Image(id=image_id) for image_id in image_ids]

 logger.info("performing quality check")
 urls = [img.url for img in db_images]
 arguments = [job_config]
 rejecteds = runner.map("quality_reject_check", urls, arguments)

 good_images = []
 for image, rejected in zip(db_images, rejecteds):
 if rejected:
 reason, comment = rejected
 steps.quality.reject_image(image.id, reason, comment)
 else:
 good_images.append(image)

 if not good_images:
 logger.warn("No good images under these quality checking criteria")
 return

 grouped_images = group_per_timestep(good_images)
 timestep_num = len(grouped_images)
 for n, (timestep, images) in enumerate(grouped_images):
 msg = "processing %s images in timestep %s (%s/%s)"
 logger.info(msg % (len(images), timestep, n+1, timestep_num))

 logger.info("performing source extraction")
 urls = [img.url for img in images]
 arguments = [se_parset]

 extraction_results = runner.map("extract_sources", urls, arguments)

 logger.info("storing extracted sources to database")
 # we also set the image max,min RMS values which calculated during
 # source extraction
 for image, results in zip(images, extraction_results):
 image.update(rms_min=results.rms_min, rms_max=results.rms_max,
 detection_thresh=se_parset['detection_threshold'],
 analysis_thresh=se_parset['analysis_threshold'])
 dbgen.insert_extracted_sources(image.id, results.sources, 'blind')

 logger.info("performing database operations")

 for image in images:
 logger.info("performing DB operations for image %s" % image.id)

 logger.info("performing source association")
 dbass.associate_extracted_sources(image.id,
 deRuiter_r=deruiter_radius,
 new_source_sigma_margin=new_src_sigma)

 all_fit_posns, all_fit_ids = steps_ff.get_forced_fit_requests(image)
 if all_fit_posns:
 successful_fits, successful_ids = steps_ff.perform_forced_fits(
 all_fit_posns, all_fit_ids, image.url, se_parset)

 steps_ff.insert_and_associate_forced_fits(image.id,successful_fits,
 successful_ids)

 dbgen.update_dataset_process_end_ts(dataset_id)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/utility.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.utility

"""
Root level :mod:`tkp.utility` functions that don't justify a submodule:
"""
import math

def nice_format(f):
 if f > 9999 or f < 0.01:
 return "%.2e" % f
 else:
 return "%.2f" % f

def substitute(value, sub, test_f):
 try:
 if test_f(value):
 return sub
 except TypeError:
 pass
 return value

[docs]def substitute_inf(value, sub="Infinity"):
 """
 If value is not infinite, return value. Otherwise, return sub.
 """
 return substitute(value, sub, math.isinf)

[docs]def substitute_nan(value, sub=0.0):
 """
 If value is not NaN, return value. Otherwise, return sub.

 """
 return substitute(value, sub, math.isnan)

[docs]class adict(dict):
 """
 Accessing dict keys like an attribute.
 """

 def __getattr__(self, key):
 try:
 return self[key]
 except KeyError:
 msg = "can't find %s, please check your settings file"
 raise AttributeError(msg % key)

 __setattr__ = dict.__setitem__

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 All modules for which code is available

		namedtuple_ExtractedSourceTuple

		namedtuple_ExtractionResults

		namedtuple_FitsTest

		namedtuple_RejectReason

		tkp.accessors

		tkp.accessors.dataaccessor

		tkp.accessors.detection

		tkp.accessors.lofaraccessor

		tkp.config

		tkp.config.parse

		tkp.db

		tkp.db.associations

		tkp.db.configstore

		tkp.db.consistency

		tkp.db.database

		tkp.db.dump

		tkp.db.general

		tkp.db.generic

		tkp.db.monitoringlist

		tkp.db.nulldetections

		tkp.db.orm

		tkp.db.quality

		tkp.main

		tkp.quality.brightsource

		tkp.quality.restoringbeam

		tkp.quality.rms

		tkp.quality.statistics

		tkp.sourcefinder.deconv

		tkp.sourcefinder.extract

		tkp.sourcefinder.fitting

		tkp.sourcefinder.gaussian

		tkp.sourcefinder.image

		tkp.sourcefinder.stats

		tkp.sourcefinder.utils

		tkp.steps.forced_fitting

		tkp.steps.misc

		tkp.steps.persistence

		tkp.steps.quality

		tkp.steps.source_extraction

		tkp.telescope.lofar.antennaarrays

		tkp.telescope.lofar.beam

		tkp.telescope.lofar.noise

		tkp.testutil.db_queries

		tkp.testutil.db_subs

		tkp.testutil.decorators

		tkp.utility

		tkp.utility.containers

		tkp.utility.coordinates

		tkp.utility.fits

		tkp.utility.memoize

		tkp.utility.sigmaclip

		tkp.utility.uncertain

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_static/file.png

_images/graphviz-d18ccfef405df23b4b800d945783a074829f2b8f.png
fs fg) -» L

_images/graphviz-0393bf0d654dc3d6ad9dc5493736a935ab8445c4.png

_static/down.png

_images/graphviz-be10579e0fe36b60dc7cf46b24183bb0407e95d8.png
ty

Band 1

Band 2

_images/graphviz-64adeb6104bdda21dea5cc6cf25d8d6fd5036ae2.png

_images/graphviz-7f48c6972d3990a19060b4ca45cbd800f97175c4.png
4 I3 5 ty

Band 2

_images/graphviz-2f6bf52cec5a2916149950d5b4dd76dfda16d83d.png

_images/graphviz-b45caae866b48f3aa83775ee00eb902ad55e9d2b.png
g

_modules/tkp/sourcefinder/extract.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.sourcefinder.extract

"""
Source Extraction Helpers.

These are used in conjunction with image.ImageData.
"""

import logging
import math
DictMixin may need to be replaced using collections.MutableMapping;
see http://docs.python.org/library/userdict.html#UserDict.DictMixin
from UserDict import DictMixin
import numpy
try:
 import ndimage
except ImportError:
 from scipy import ndimage
from tkp.sourcefinder.deconv import deconv
from ..utility import coordinates
from ..utility.uncertain import Uncertain
from .gaussian import gaussian
from . import fitting
from . import utils

logger = logging.getLogger(__name__)

This is used as a dummy value, -BIGNUM values will be always be masked.
As such, it should be larger than the expected range of real values,
since we will get negative values representing real data after
background subtraction, etc.
BIGNUM = 99999.0

[docs]class Island(object):
 """
 The source extraction process forms islands, which it then fits.
 Each island needs to know its position in the image (ie, x, y pixel
 value at one corner), the threshold above which it is detected
 (analysis_threshold by default, but will increase if the island is
 the result of deblending), and a data array.

 The island should provide a means of deblending: splitting itself
 apart and returning multiple sub-islands, if necessary.
 """

 def __init__(self, data, rms, chunk, analysis_threshold, detection_map,
 beam, deblend_nthresh, deblend_mincont, structuring_element,
 rms_orig=None, flux_orig=None, subthrrange=None
):

 # deblend_nthresh is the number of subthresholds used when deblending.
 self.deblend_nthresh = deblend_nthresh
 # If we deblend too far, we hit the recursion limit. And it's slow.
 if self.deblend_nthresh > 300:
 logger.warn("Limiting to 300 deblending subtresholds")
 self.deblend_nthresh = 300
 else:
 logger.debug("Using %d subthresholds", deblend_nthresh)

 # Deblended components of this island must contain at least
 # deblend_mincont times the total flux of the original to be regarded
 # as significant.
 self.deblend_mincont = deblend_mincont

 # The structuring element defines connectivity between pixels.
 self.structuring_element = structuring_element

 # NB we have set all unused data to -(lots) before passing it to
 # Island().
 mask = numpy.where(data > -BIGNUM / 10.0, 0, 1)
 self.data = numpy.ma.array(data, mask=mask)
 self.rms = rms
 self.chunk = chunk
 self.analysis_threshold = analysis_threshold
 self.detection_map = detection_map
 self.beam = beam
 self.max_pos = ndimage.maximum_position(self.data.filled(fill_value=0))
 self.position = (self.chunk[0].start, self.chunk[1].start)
 if not isinstance(rms_orig, numpy.ndarray):
 self.rms_orig = self.rms
 else:
 self.rms_orig = rms_orig
 # The idea here is to retain the flux of the original, unblended
 # island. That flux is used as a criterion for deblending.
 if not isinstance(flux_orig, float):
 self.flux_orig = self.data.sum()
 else:
 self.flux_orig = flux_orig
 if isinstance(subthrrange, numpy.ndarray):
 self.subthrrange = subthrrange
 else:
 self.subthrrange = utils.generate_subthresholds(
 self.data.min(), self.data.max(), self.deblend_nthresh
)

[docs] def deblend(self, niter=0):
 """Return a decomposed numpy array of all the subislands.

 Iterate up through subthresholds, looking for our island
 splitting into two. If it does, start again, with two or more
 separate islands.
 """

 logger.debug("Deblending source")
 for level in self.subthrrange[niter:]:

 # The idea is to retain the parent island when no significant
 # subislands are found and jump to the next subthreshold
 # using niter.
 # Deblending is started at a level higher than the lowest
 # pixel value in the island.
 # Deblending at the level of the lowest pixel value will
 # likely not yield anything, because the island was formed at
 # threshold just below that.
 # So that is why we use niter+1 (>=1) instead of niter (>=0).

 if level > self.data.max():
 # level is above the highest pixel value...
 # Return the current island.
 break
 clipped_data = numpy.where(
 self.data.filled(fill_value=0) >= level, 1, 0)
 labels, number = ndimage.label((clipped_data),
 self.structuring_element)
 # If we have more than one island, then we need to make subislands.
 if number > 1:
 subislands = []
 label = 0
 for chunk in ndimage.find_objects(labels):
 label += 1
 newdata = numpy.where(
 labels == label,
 self.data.filled(fill_value=-BIGNUM), -BIGNUM
)
 # NB: In class Island(object), rms * analysis_threshold
 # is taken as the threshold for the bottom of the island.
 # Everything below that level is masked.
 # For subislands, this product should be equal to level
 # and flat, i.e., horizontal.
 # We can achieve this by setting rms=level*ones and
 # analysis_threshold=1.
 island = Island(
 newdata[chunk],
 (numpy.ones(self.data[chunk].shape) * level),
 (
 slice(self.chunk[0].start + chunk[0].start,
 self.chunk[0].start + chunk[0].stop),
 slice(self.chunk[1].start + chunk[1].start,
 self.chunk[1].start + chunk[1].stop)
),
 1,
 self.detection_map[chunk],
 self.beam,
 self.deblend_nthresh,
 self.deblend_mincont,
 self.structuring_element,
 self.rms_orig[chunk[0].start:chunk[0].stop, chunk[1].start:chunk[1].stop],
 self.flux_orig,
 self.subthrrange
)

 subislands.append(island)
 # This line should filter out any subisland with insufficient
 # flux, in about the same way as SExtractor.
 # Sufficient means: the flux of the branch above the
 # subthreshold (=level) must exceed some user given fraction
 # of the composite object, i.e., the original island.
 subislands = filter(
 lambda isl: (isl.data-numpy.ma.array(
 numpy.ones(isl.data.shape)*level,
 mask=isl.data.mask)).sum() > self.deblend_mincont *
 self.flux_orig, subislands)
 # Discard subislands below detection threshold
 subislands = filter(
 lambda isl: (isl.data - isl.detection_map).max() >= 0,
 subislands)
 numbersignifsub = len(subislands)
 # Proceed with the previous island, but make sure the next
 # subthreshold is higher than the present one.
 # Or we would end up in an infinite loop...
 if numbersignifsub > 1:
 if niter+1 < self.deblend_nthresh:
 # Apparently, the map command always results in
 # nested lists.
 return list(utils.flatten(map(
 lambda island: island.deblend(niter=niter+1),
 subislands)))
 else:
 return subislands
 elif numbersignifsub == 1 and niter+1 < self.deblend_nthresh:
 return Island.deblend(self, niter=niter+1)
 else:
 # In this case we have numbersignifsub == 0 or
 # (1 and reached the highest subthreshold level).
 # Pull out of deblending loop, return current island.
 break
 # We've not found any subislands: just return this island.
 return self

[docs] def threshold(self):
 """Threshold"""
 return self.noise() * self.analysis_threshold

[docs] def noise(self):
 """Noise at maximum position"""
 return self.rms[self.max_pos]

[docs] def sig(self):
 """Deviation"""
 return (self.data/ self.rms_orig).max()

[docs] def fit(self, fixed=None):
 """Fit the position"""
 try:
 measurement, gauss_residual = source_profile_and_errors(
 self.data, self.threshold(), self.noise(), self.beam, fixed=fixed
)
 except ValueError:
 # Fitting failed
 logger.error("Moments & Gaussian fitting failed at %s" % (str(self.position)))
 return None
 measurement["xbar"] += self.position[0]
 measurement["ybar"] += self.position[1]
 measurement.sig = self.sig()
 return measurement, gauss_residual

[docs]class ParamSet(DictMixin):
 """
 All the source fitting methods should go to produce a ParamSet, which
 gives all the information necessary to make a Detection.
 """

 def __init__(self, clean_bias=0.0, clean_bias_error=0.0,
 frac_flux_cal_error=0.0, alpha_maj1=2.5, alpha_min1=0.5,
 alpha_maj2=0.5, alpha_min2=2.5, alpha_maj3=1.5, alpha_min3=1.5):

 self.clean_bias = clean_bias
 self.clean_bias_error = clean_bias_error
 self.frac_flux_cal_error = frac_flux_cal_error
 self.alpha_maj1 = alpha_maj1
 self.alpha_min1 = alpha_min1
 self.alpha_maj2 = alpha_maj2
 self.alpha_min2 = alpha_min2
 self.alpha_maj3 = alpha_maj3
 self.alpha_min3 = alpha_min3

 self.values = {
 'peak': Uncertain(),
 'flux': Uncertain(),
 'xbar': Uncertain(),
 'ybar': Uncertain(),
 'semimajor': Uncertain(),
 'semiminor': Uncertain(),
 'theta': Uncertain(),
 'semimaj_deconv': Uncertain(),
 'semimin_deconv': Uncertain(),
 'theta_deconv': Uncertain()
 }
 # This parameter gives the number of components that could not be
 # deconvolved, IERR from deconf.f.
 self.deconv_imposs = 2

 # These flags are used to indicate where the values stored in this
 # parameterset have come from: we set them to True if & when moments
 # and/or Gaussian fitting succeeds.
 self.moments = False
 self.gaussian = False

 ##More metadata about the fit: only valid for Gaussian fits:
 self.chisq = None
 self.reduced_chisq = None

 def __getitem__(self, item):
 return self.values[item]

 def __setitem__(self, item, value):
 if item in self.values:
 if isinstance(value, Uncertain):
 self.values[item] = value
 else:
 self.values[item].value = value
 elif item[:3] == 'err' and item[3:] in self.values:
 self.values[item[3:]].error = value
 else:
 raise AttributeError("Invalid parameter")

[docs] def keys(self):
 """ """
 return self.values.keys()

[docs] def calculate_errors(self, noise, beam, threshold):
 """Calculate positional errors

 Uses _condon_formulae() if this object is based on a Gaussian fit,
 _error_bars_from_moments() if it's based on moments.
 """

 if self.gaussian:
 return self._condon_formulae(noise, beam)
 elif self.moments:
 if not threshold:
 threshold = 0
 return self._error_bars_from_moments(noise, beam, threshold)
 else:
 return False

 def _condon_formulae(self, noise, beam):
 """Returns the errors on parameters from Gaussian fits according to
 the Condon (PASP 109, 166 (1997)) formulae.

 These formulae are not perfect, but we'll use them for the
 time being. (See Refregier and Brown (astro-ph/9803279v1) for
 a more rigorous approach.) It also returns the corrected peak.
 The peak is corrected for the overestimate due to the local
 noise gradient.
 """
 peak = self['peak'].value
 flux = self['flux'].value
 smaj = self['semimajor'].value
 smin = self['semiminor'].value
 theta = self['theta'].value

 theta_B, theta_b = utils.calculate_correlation_lengths(
 beam[0], beam[1])

 rho_sq1 = ((smaj*smin/(theta_B*theta_b)) *
 (1.+(theta_B/(2.*smaj))**2)**self.alpha_maj1 *
 (1.+(theta_b/(2.*smin))**2)**self.alpha_min1 *
 (peak/noise)**2)
 rho_sq2 = ((smaj*smin/(theta_B*theta_b)) *
 (1.+(theta_B/(2.*smaj))**2)**self.alpha_maj2 *
 (1.+(theta_b/(2.*smin))**2)**self.alpha_min2 *
 (peak/noise)**2)
 rho_sq3 = ((smaj*smin/(theta_B*theta_b)) *
 (1.+(theta_B/(2.*smaj))**2)**self.alpha_maj3 *
 (1.+(theta_b/(2.*smin))**2)**self.alpha_min3 *
 (peak/noise)**2)

 rho1 = numpy.sqrt(rho_sq1)
 rho2 = numpy.sqrt(rho_sq2)
 rho3 = numpy.sqrt(rho_sq3)

 denom1 = numpy.sqrt(2.*numpy.log(2.)) * rho1
 denom2 = numpy.sqrt(2.*numpy.log(2.)) * rho2

 # Here you get the errors parallel to the fitted semi-major and
 # semi-minor axes as taken from the NVSS paper (Condon et al. 1998,
 # AJ, 115, 1693), formula 25.
 # Those variances are twice the theoreticals, so the errors in
 # position are sqrt(2) as large as one would get from formula 21
 # of the Condon (1997) paper.
 error_par_major = 2.*smaj/denom1
 error_par_minor = 2.*smin/denom2

 # When these errors are converted to RA and Dec,
 # calibration uncertainties will have to be added,
 # like in formulae 27 of the NVSS paper.
 errorx = numpy.sqrt((error_par_major * numpy.sin(theta))**2 +
 (error_par_minor * numpy.cos(theta))**2)
 errory = numpy.sqrt((error_par_major * numpy.cos(theta))**2 +
 (error_par_minor * numpy.sin(theta))**2)

 # Note that we report errors in HWHM axes instead of FWHM axes
 # so the errors are half the errors of formula 29 of the NVSS paper.
 errorsmaj = numpy.sqrt(2) * smaj / rho1
 errorsmin = numpy.sqrt(2) * smin / rho2

 if smaj > smin:
 errortheta = 2.0 * (smaj*smin/(smaj**2-smin**2))/rho2
 else:
 errortheta = numpy.pi
 if errortheta > numpy.pi:
 errortheta = numpy.pi

 peak += -noise**2/peak + self.clean_bias

 errorpeaksq = ((self.frac_flux_cal_error * peak)**2 +
 self.clean_bias_error**2 +
 2. * peak**2 / rho_sq3)

 errorpeak = numpy.sqrt(errorpeaksq)

 help1 = (errorsmaj/smaj)**2
 help2 = (errorsmin/smin)**2
 help3 = theta_B * theta_b / (4. * smaj * smin)
 errorflux = numpy.abs(flux)*numpy.sqrt(errorpeaksq/peak**2+help3*(help1+help2))

 self['peak'] = Uncertain(peak, errorpeak)
 self['flux'].error = errorflux
 self['xbar'].error = errorx
 self['ybar'].error = errory
 self['semimajor'].error = errorsmaj
 self['semiminor'].error = errorsmin
 self['theta'].error = errortheta

 return self

 def _error_bars_from_moments(self, noise, beam, threshold):
 """Provide reasonable error estimates from the moments"""

 # The formulae below should give some reasonable estimate of the
 # errors from moments, should always be higher than the errors from
 # Gauss fitting.
 peak = self['peak'].value
 flux = self['flux'].value
 smaj = self['semimajor'].value
 smin = self['semiminor'].value
 theta = self['theta'].value

 # This analysis is only possible if the peak flux is >= 0. This
 # follows from the definition of eq. 2.81 in Spreeuw's thesis. In that
 # situation, we set all errors to be infinite
 if peak < 0:
 self['peak'].error = float('inf')
 self['flux'].error = float('inf')
 self['semimajor'].error = float('inf')
 self['semiminor'].error = float('inf')
 self['theta'].error = float('inf')
 return self

 clean_bias_error = self.clean_bias_error
 frac_flux_cal_error = self.frac_flux_cal_error
 theta_B, theta_b = utils.calculate_correlation_lengths(
 beam[0], beam[1])

 # This is eq. 2.81 from Spreeuw's thesis.
 rho_sq = ((16. * smaj * smin /
 (numpy.log(2.) * theta_B * theta_b*noise**2))
 * ((peak - threshold) /
 (numpy.log(peak) - numpy.log(threshold)))**2)

 rho = numpy.sqrt(rho_sq)
 denom = numpy.sqrt(2.*numpy.log(2.))*rho

 # Again, like above for the Condon formulae, we set the
 # positional variances to twice the theoretical values.
 error_par_major = 2. * smaj / denom
 error_par_minor = 2. * smin / denom

 # When these errors are converted to RA and Dec,
 # calibration uncertainties will have to be added,
 # like in formulae 27 of the NVSS paper.
 errorx = numpy.sqrt((error_par_major * numpy.sin(theta))**2
 + (error_par_minor * numpy.cos(theta))**2)
 errory = numpy.sqrt((error_par_major * numpy.cos(theta))**2
 + (error_par_minor * numpy.sin(theta))**2)

 # Note that we report errors in HWHM axes instead of FWHM axes
 # so the errors are half the errors of formula 29 of the NVSS paper.
 errorsmaj = numpy.sqrt(2) * smaj / rho
 errorsmin = numpy.sqrt(2) * smin / rho

 if smaj > smin:
 errortheta = 2.0 * (smaj * smin / (smaj**2 -smin**2)) / rho
 else:
 errortheta = numpy.pi
 if errortheta > numpy.pi:
 errortheta = numpy.pi

 # The peak from "moments" is just the value of the maximum pixel
 # times a correction, fudge_max_pix, for the fact that the
 # centre of the Gaussian is not at the centre of the pixel.
 # This correction is performed in fitting.py. The maximum pixel
 # method introduces a peak dependent error corresponding to the last
 # term in the expression below for errorpeaksq.
 # To this, we add, in quadrature, the errors corresponding
 # to the first and last term of the rhs of equation 37 of the
 # NVSS paper. The middle term in that equation 37 is heuristically
 # replaced by noise**2 since the threshold should not affect
 # the error from the (corrected) maximum pixel method,
 # while it is part of the expression for rho_sq above.
 errorpeaksq = ((frac_flux_cal_error*peak)**2 +
 clean_bias_error**2+noise**2 +
 utils.maximum_pixel_method_variance(
 beam[0], beam[1], beam[2])*peak**2)
 errorpeak = numpy.sqrt(errorpeaksq)

 help1 = (errorsmaj/smaj)**2
 help2 = (errorsmin/smin)**2
 help3 = theta_B*theta_b/(4.*smaj*smin)
 errorflux = flux*numpy.sqrt(errorpeaksq/peak**2+help3*(help1+help2))

 self['peak'].error = errorpeak
 self['flux'].error = errorflux
 self['xbar'].error = errorx
 self['ybar'].error = errory
 self['semimajor'].error = errorsmaj
 self['semiminor'].error = errorsmin
 self['theta'].error = errortheta

 return self

[docs] def deconvolve_from_clean_beam(self, beam):
 """Deconvolve with the clean beam"""

 # If the fitted axes are smaller than the clean beam
 # (=restoring beam) axes, the axes and position angle
 # can be deconvolved from it.
 fmaj = 2.*self['semimajor'].value
 fmajerror = 2.*self['semimajor'].error
 fmin = 2.*self['semiminor'].value
 fminerror = 2.*self['semiminor'].error
 fpa = numpy.degrees(self['theta'].value)
 fpaerror = numpy.degrees(self['theta'].error)
 cmaj = 2.*beam[0]
 cmin = 2.*beam[1]
 cpa = numpy.degrees(beam[2])

 rmaj, rmin, rpa, ierr = deconv(fmaj, fmin, fpa, cmaj, cmin, cpa)
 # This parameter gives the number of components that could not be
 # deconvolved, IERR from deconf.f.
 self.deconv_imposs = ierr
 # Now, figure out the error bars.
 if rmaj > 0:
 # In this case the deconvolved position angle is defined.
 # For convenience we reset rpa to the interval [-90, 90].
 if rpa > 90:
 rpa = -numpy.mod(-rpa, 180.)
 self['theta_deconv'].value = rpa

 # In the general case, where the restoring beam is elliptic,
 # calculating the error bars of the deconvolved position angle
 # is more complicated than in the NVSS case, where a circular
 # restoring beam was used.
 # In the NVSS case the error bars of the deconvolved angle are
 # equal to the fitted angle.
 rmaj1, rmin1, rpa1, ierr1 = deconv(
 fmaj, fmin, fpa+fpaerror, cmaj, cmin, cpa)
 if ierr1 < 2:
 if rpa1 > 90:
 rpa1 = -numpy.mod(-rpa1, 180.)
 rpaerror1 = numpy.abs(rpa1-rpa)
 # An angle error can never be more than 90 degrees.
 if rpaerror1 > 90.:
 rpaerror1 = numpy.mod(-rpaerror1, 180.)
 else:
 rpaerror1 = numpy.nan
 rmaj2, rmin2, rpa2, ierr2 = deconv(
 fmaj, fmin, fpa-fpaerror, cmaj, cmin, cpa)
 if ierr2 < 2:
 if rpa2 > 90:
 rpa2 = -numpy.mod(-rpa2, 180.)
 rpaerror2 = numpy.abs(rpa2 - rpa)
 # An angle error can never be more than 90 degrees.
 if rpaerror2 > 90.:
 rpaerror2 = numpy.mod(-rpaerror2, 180.)
 else:
 rpaerror2 = numpy.nan
 if numpy.isnan(rpaerror1) or numpy.isnan(rpaerror2):
 self['theta_deconv'].error = numpy.nansum(
 [rpaerror1, rpaerror2])
 else:
 self['theta_deconv'].error = numpy.mean(
 [rpaerror1, rpaerror2])
 self['semimaj_deconv'].value = rmaj / 2.
 rmaj3, rmin3, rpa3, ierr3 = deconv(
 fmaj + fmajerror, fmin, fpa, cmaj, cmin, cpa)
 # If rmaj>0, then rmaj3 should also be > 0,
 # if I am not mistaken, see the formulas at
 # the end of ch.2 of Spreeuw's Ph.D. thesis.
 if fmaj-fmajerror > fmin:
 rmaj4, rmin4, rpa4, ierr4 = deconv(
 fmaj-fmajerror, fmin, fpa, cmaj, cmin, cpa)
 if rmaj4 > 0:
 self['semimaj_deconv'].error = numpy.mean(
 [numpy.abs(rmaj3-rmaj), numpy.abs(rmaj - rmaj4)])
 else:
 self['semimaj_deconv'].error = numpy.abs(rmaj3 - rmaj)
 else:
 rmin4, rmaj4, rpa4, ierr4 = deconv(
 fmin, fmaj - fmajerror, fpa, cmaj, cmin, cpa)
 if rmaj4>0:
 self['semimaj_deconv'].error = numpy.mean(
 [numpy.abs(rmaj3-rmaj), numpy.abs(rmaj - rmaj4)])
 else:
 self['semimaj_deconv'].error = numpy.abs(rmaj3 - rmaj)
 if rmin > 0:
 self['semimin_deconv'].value = rmin / 2.
 if fmin + fminerror < fmaj:
 rmaj5, rmin5, rpa5, ierr5 = deconv(
 fmaj, fmin+fminerror, fpa, cmaj, cmin, cpa)
 else:
 rmin5, rmaj5, rpa5, ierr5 = deconv(
 fmin+fminerror, fmaj, fpa, cmaj, cmin, cpa)
 # If rmin > 0, then rmin5 should also be > 0,
 # if I am not mistaken, see the formulas at
 # the end of ch.2 of Spreeuw's Ph.D. thesis.
 rmaj6, rmin6, rpa6, ierr6 = deconv(
 fmaj, fmin-fminerror, fpa, cmaj, cmin, cpa)
 if rmin6 > 0:
 self['semimin_deconv'].error = numpy.mean(
 [numpy.abs(rmin6-rmin), numpy.abs(rmin5 - rmin)])
 else:
 self['semimin_deconv'].error = numpy.abs(rmin5 - rmin)
 else:
 self['semimin_deconv'] = Uncertain(
 numpy.nan, numpy.nan)
 else:
 self['semimaj_deconv'] = Uncertain(numpy.nan, numpy.nan)
 self['semimin_deconv'] = Uncertain(numpy.nan, numpy.nan)
 self['theta_deconv'] = Uncertain(numpy.nan, numpy.nan)

 return self

[docs]def source_profile_and_errors(data, threshold, noise,
 beam, fixed=None):
 """Return a number of measurable properties with errorbars

 Given an island of pixels it will return a number of measurable
 properties including errorbars. It will also compute residuals
 from Gauss fitting and export these to a residual map.

 In addition to handling the initial parameter estimation, and any fits
 which fail to converge, this function runs the goodness-of-fit
 calculations -
 see :func:`tkp.sourcefinder.fitting.goodness_of_fit` for details.

 Args:

 data (numpy.ndarray): array of pixel values, can be a masked
 array, which is necessary for proper Gauss fitting,
 because the pixels below the threshold in the corners and
 along the edges should not be included in the fitting
 process

 threshold (float): Threshold used for selecting pixels for the
 source (ie, building an island)

 noise (float): Noise level in data

 beam (tuple): beam parameters (semimaj,semimin,theta)

 Kwargs:

 fixed (dict): Parameters (and their values) to hold fixed while fitting.
 Passed on to fitting.fitgaussian().

 Returns:
 tuple: a populated ParamSet, and a residuals map.
 Note the residuals map is a regular ndarray, where masked (unfitted)
 regions have been filled with 0-values.

 """

 if fixed is None:
 fixed = {}
 param = ParamSet()

 if threshold is None:
 moments_threshold=0
 else:
 moments_threshold = threshold

 try:
 param.update(fitting.moments(data, beam, moments_threshold))
 param.moments = True
 except ValueError:
 # If this happens, we have two choices:
 # 1) Bomb out and tell the user to fit something sensible instead;
 # 2) Make up our own estimate (all 1s or something) to give the
 # gaussian fitter a starting point.
 param.update({
 "peak": 1,
 "flux": 1,
 "xbar": data.shape[0]/2.0,
 "ybar": data.shape[1]/2.0,
 "semimajor": 1,
 "semiminor": 1,
 "theta": 0
 })
 logger.debug("Unable to estimate gaussian parameters."
 " Proceeding with defaults %s""",
 str(param))

 ranges = data.nonzero()
 xmin = min(ranges[0])
 xmax = max(ranges[0])
 ymin = min(ranges[1])
 ymax = max(ranges[1])

 if (numpy.fabs(xmax-xmin) > 2) and (numpy.fabs(ymax-ymin) > 2):
 # Now we can do Gauss fitting if the island or subisland has a
 # thickness of more than 2 in both dimensions.
 try:
 gaussian_soln = fitting.fitgaussian(data, param, fixed=fixed)
 param.update(gaussian_soln)
 param.gaussian = True
 logger.debug('Gauss fitting was successful.')
 except ValueError:
 logger.warn('Gauss fitting failed.')

 if fixed and not param.gaussian:
 # moments can't handle fixed params
 raise ValueError("fit failed with given fixed parameters")

 beamsize = utils.calculate_beamsize(beam[0], beam[1])
 param["flux"] = (numpy.pi * param["peak"] * param["semimajor"] *
 param["semiminor"] / beamsize)
 param.calculate_errors(noise, beam, threshold)
 param.deconvolve_from_clean_beam(beam)

 # Calculate residuals
 # NB this works even if Gaussian fitting fails, we generate the model from
 # the moments-fit parameters.
 gauss_arg = (param["peak"].value,
 param["xbar"].value,
 param["ybar"].value,
 param["semimajor"].value,
 param["semiminor"].value,
 param["theta"].value)
 gauss_resid_masked = -(gaussian(*gauss_arg)(*numpy.indices(data.shape)) - data)

 param.chisq, param.reduced_chisq = fitting.goodness_of_fit(
 gauss_resid_masked, noise, beam)

 gauss_resid_filled = gauss_resid_masked.filled(fill_value=0.)
 return param, gauss_resid_filled

[docs]class Detection(object):
 """The result of a measurement at a given position in a given image."""

 def __init__(self, paramset, imagedata, chunk=None, eps_ra=0, eps_dec=0):

 self.eps_ra = eps_ra
 self.eps_dec = eps_dec

 self.imagedata = imagedata
 ##self.wcs = imagedata.wcs
 self.chunk = chunk

 self.peak = paramset['peak']
 self.flux = paramset['flux']
 self.x = paramset['xbar']
 self.y = paramset['ybar']
 self.smaj = paramset['semimajor']
 self.smin = paramset['semiminor']
 self.theta = paramset['theta']
 # This parameter gives the number of components that could not
 # be deconvolved, IERR from deconf.f.
 self.dc_imposs = paramset.deconv_imposs
 self.smaj_dc = paramset['semimaj_deconv']
 self.smin_dc = paramset['semimin_deconv']
 self.theta_dc = paramset['theta_deconv']
 self.error_radius = None
 self.gaussian = paramset.gaussian
 self.chisq = paramset.chisq
 self.reduced_chisq = paramset.reduced_chisq

 self.sig = paramset.sig

 try:
 self._physical_coordinates()
 except RuntimeError:
 logger.warn("Physical coordinates failed at %f, %f" % (
 self.x, self.y))
 raise

 def __getstate__(self):
 return {
 'imagedata': self.imagedata,
 'chunk': (self.chunk[0].start, self.chunk[0].stop,
 self.chunk[1].start, self.chunk[1].stop),
 'peak': self.peak,
 'flux': self.flux,
 'x': self.x,
 'y': self.y,
 'smaj': self.smaj,
 'smin': self.smin,
 'theta': self.theta,
 'sig': self.sig,
 'error_radius': self.error_radius,
 'gaussian': self.gaussian,
 }

 def __setstate__(self, attrdict):
 self.imagedata = attrdict['imagedata']
 self.chunk = (slice(attrdict['chunk'][0], attrdict['chunk'][1]),
 slice(attrdict['chunk'][2], attrdict['chunk'][3]))
 self.peak = attrdict['peak']
 self.flux = attrdict['flux']
 self.x = attrdict['x']
 self.y = attrdict['y']
 self.smaj = attrdict['smaj']
 self.smin = attrdict['smin']
 self.theta = attrdict['theta']
 self.sig = attrdict['sig']
 self.error_radius = attrdict['error_radius']
 self.gaussian = attrdict['gaussian']

 try:
 self._physical_coordinates()
 except RuntimeError, e:
 logger.warn("Physical coordinates failed at %f, %f" % (
 self.x, self.y))
 raise

 def __getattr__(self, attrname):
 # Backwards compatibility for "errquantity" attributes
 if attrname[:3] == "err":
 return self.__getattribute__(attrname[3:]).error
 else:
 raise AttributeError(attrname)

 def __str__(self):
 return "(%.2f, %.2f) +/- (%.2f, %.2f): %g +/- %g" % (
 self.ra.value, self.dec.value, self.ra.error*3600, self.dec.error*3600,
 self.peak.value, self.peak.error)

 def __repr__(self):
 return str(self)

 def _physical_coordinates(self):
 """Convert the pixel parameters for this object into something
 physical."""

 # First, the RA & dec.
 self.ra, self.dec = [Uncertain(x) for x in self.imagedata.wcs.p2s(
 [self.x.value, self.y.value])]
 if numpy.isnan(self.dec.value) or abs(self.dec) > 90.0:
 raise ValueError("object falls outside the sky")

 # First, determine local north.
 help1 = numpy.cos(numpy.radians(self.ra.value))
 help2 = numpy.sin(numpy.radians(self.ra.value))
 help3 = numpy.cos(numpy.radians(self.dec.value))
 help4 = numpy.sin(numpy.radians(self.dec.value))
 center_position = numpy.array([help3*help1, help3*help2, help4])

 # The length of this vector is chosen such that it touches
 # the tangent plane at center position.
 # The cross product of the local north vector and the local east
 # vector will always be aligned with the center_position vector.
 if center_position[2] != 0:
 local_north_position = numpy.array([0., 0., 1./center_position[2]])
 else:
 # If we are right on the equator (ie dec=0) the division above
 # will blow up: as a workaround, we use something Really Big
 # instead.
 local_north_position = numpy.array([0., 0., 99e99])
 # Next, determine the orientation of the y-axis wrt local north
 # by incrementing y by a small amount and converting that
 # to celestial coordinates. That small increment is conveniently
 # chosen to be an increment of 1 pixel.

 endy_ra, endy_dec = self.imagedata.wcs.p2s(
 [self.x.value, self.y.value+1.])
 help5 = numpy.cos(numpy.radians(endy_ra))
 help6 = numpy.sin(numpy.radians(endy_ra))
 help7 = numpy.cos(numpy.radians(endy_dec))
 help8 = numpy.sin(numpy.radians(endy_dec))
 endy_position = numpy.array([help7*help5, help7*help6, help8])

 # Extend the length of endy_position to make it touch the plane
 # tangent at center_position.
 endy_position /= numpy.dot(center_position, endy_position)

 diff1 = endy_position-center_position
 diff2 = local_north_position-center_position

 cross_prod = numpy.cross(diff2, diff1)

 length_cross_sq = numpy.dot(cross_prod, cross_prod)

 normalization = numpy.dot(diff1, diff1) * numpy.dot(diff2, diff2)

 # The length of the cross product equals the product of the lengths of
 # the vectors times the sine of their angle.
 # This is the angle between the y-axis and local north,
 # measured eastwards.
 # yoffset_angle = numpy.degrees(
 # numpy.arcsin(numpy.sqrt(length_cross_sq/normalization)))
 # The formula above is commented out because the angle computed
 # in this way will always be 0<=yoffset_angle<=90.
 # We'll use the dotproduct instead.
 yoffs_rad = (numpy.arccos(numpy.dot(diff1, diff2) /
 numpy.sqrt(normalization)))

 # The multiplication with -sign_cor makes sure that the angle
 # is measured eastwards (increasing RA), not westwards.
 sign_cor = (numpy.dot(cross_prod, center_position) /
 numpy.sqrt(length_cross_sq))
 yoffs_rad *= -sign_cor
 yoffset_angle = numpy.degrees(yoffs_rad)

 # Now that we have the BPA, we can also compute the position errors
 # properly, by projecting the errors in pixel coordinates (x and y)
 # on local north and local east.
 errorx_proj = numpy.sqrt(
 (self.x.error*numpy.cos(yoffs_rad))**2 +
 (self.y.error*numpy.sin(yoffs_rad))**2)
 errory_proj = numpy.sqrt(
 (self.x.error*numpy.sin(yoffs_rad))**2 +
 (self.y.error*numpy.cos(yoffs_rad))**2)

 # Now we have to sort out which combination of errorx_proj and
 # errory_proj gives the largest errors in RA and Dec.
 try:
 end_ra1, end_dec1 = self.imagedata.wcs.p2s(
 [self.x.value+errorx_proj, self.y.value])
 end_ra2, end_dec2 = self.imagedata.wcs.p2s(
 [self.x.value, self.y.value+errory_proj])
 # Here we include the position calibration errors
 self.ra.error = self.eps_ra + max(
 numpy.fabs(self.ra.value - end_ra1),
 numpy.fabs(self.ra.value - end_ra2))
 self.dec.error = self.eps_dec + max(
 numpy.fabs(self.dec.value - end_dec1),
 numpy.fabs(self.dec.value - end_dec2))
 except RuntimeError:
 #We get a runtime error from wcs.p2s if the errors place the
 #limits outside of the image.
 #In which case we set the RA / DEC uncertainties to infinity
 self.ra.error = float('inf')
 self.dec.error = float('inf')

 # Estimate an absolute angular error on our central position.
 self.error_radius = utils.get_error_radius(
 self.imagedata.wcs, self.x.value, self.x.error, self.y.value, self.y.error
)

 # Now we can compute the BPA, east from local north.
 # That these angles can simply be added is not completely trivial.
 # First, the Gaussian in gaussian.py must be such that theta is
 # measured from the positive y-axis in the direction of negative x.
 # Secondly, x and y are defined such that the direction
 # positive y-->negative x-->negative y-->positive x is the same
 # direction (counterclockwise) as (local) north-->east-->south-->west.
 # If these two conditions are matched, the formula below is valid.
 # Of course, the formula is also valid if theta is measured
 # from the positive y-axis towards positive x
 # and both of these directions are equal (clockwise).
 self.theta_celes = Uncertain(
 (numpy.degrees(self.theta.value) + yoffset_angle) % 180,
 numpy.degrees(self.theta.error))
 self.theta_dc_celes = Uncertain(
 (self.theta_dc.value + yoffset_angle) % 180,
 numpy.degrees(self.theta_dc.error))

 # Next, the axes.
 # Note that the signs of numpy.sin and numpy.cos in the
 # four expressions below are arbitrary.
 self.end_smaj_x = (self.x.value - numpy.sin(self.theta.value) *
 self.smaj.value)
 self.start_smaj_x = (self.x.value + numpy.sin(self.theta.value) *
 self.smaj.value)
 self.end_smaj_y = (self.y.value + numpy.cos(self.theta.value) *
 self.smaj.value)
 self.start_smaj_y = (self.y.value - numpy.cos(self.theta.value) *
 self.smaj.value)
 self.end_smin_x = (self.x.value + numpy.cos(self.theta.value) *
 self.smin.value)
 self.start_smin_x = (self.x.value - numpy.cos(self.theta.value) *
 self.smin.value)
 self.end_smin_y = (self.y.value + numpy.sin(self.theta.value) *
 self.smin.value)
 self.start_smin_y = (self.y.value - numpy.sin(self.theta.value) *
 self.smin.value)

 def pixel_to_spatial(x, y):
 try:
 return self.imagedata.wcs.p2s([x, y])
 except RuntimeError:
 logger.debug("pixel_to_spatial failed at %f, %f" % (x, y))
 return numpy.nan, numpy.nan
 end_smaj_ra, end_smaj_dec = pixel_to_spatial(self.end_smaj_x, self.end_smaj_y)
 end_smin_ra, end_smin_dec = pixel_to_spatial(self.end_smin_x, self.end_smin_y)

 smaj_asec = coordinates.angsep(self.ra.value, self.dec.value,
 end_smaj_ra, end_smaj_dec)
 scaling_smaj = smaj_asec / self.smaj.value
 errsmaj_asec = scaling_smaj * self.smaj.error
 self.smaj_asec = Uncertain(smaj_asec, errsmaj_asec)

 smin_asec = coordinates.angsep(self.ra.value, self.dec.value,
 end_smin_ra, end_smin_dec)
 scaling_smin = smin_asec / self.smin.value
 errsmin_asec = scaling_smin * self.smin.error
 self.smin_asec = Uncertain(smin_asec, errsmin_asec)

[docs] def distance_from(self, x, y):
 """Distance from center"""
 return ((self.x - x)**2 + (self.y - y)**2)**0.5

[docs] def serialize(self, ew_sys_err, ns_sys_err):
 """
 Return source properties suitable for database storage.

 We manually add ew_sys_err, ns_sys_err

 returns: a list of tuples containing all relevant fields
 """
 return [
 self.ra.value,
 self.dec.value,
 self.ra.error,
 self.dec.error,
 self.peak.value,
 self.peak.error,
 self.flux.value,
 self.flux.error,
 self.sig,
 self.smaj_asec.value,
 self.smin_asec.value,
 self.theta_celes.value,
 ew_sys_err,
 ns_sys_err,
 self.error_radius,
 self.gaussian,
 self.chisq,
 self.reduced_chisq
]

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/sourcefinder/utils.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.sourcefinder.utils

"""
This module contain utilities for the source finding routines
"""

import numpy
import math
import scipy.integrate
from tkp.sourcefinder.gaussian import gaussian
from tkp.utility import coordinates

[docs]def generate_subthresholds(min_value, max_value, num_thresholds):
 """
 Generate a series of ``num_thresholds`` logarithmically spaced values
 in the range (min_value, max_value) (both exclusive).
 """
 # First, we calculate a logarithmically spaced sequence between exp(0.0)
 # and (max - min + 1). That is, the total range is between 1 and one
 # greater than the difference between max and min.
 # We subtract 1 from this to get the range between 0 and (max-min).
 # We add min to that to get the range between min and max.
 subthrrange = numpy.logspace(
 0.0,
 numpy.log(max_value + 1 - min_value),
 num=num_thresholds+1, # first value == min_value
 base=numpy.e,
 endpoint=False # do not include max_value
)[1:]
 subthrrange += (min_value - 1)
 return subthrrange

[docs]def get_error_radius(wcs, x_value, x_error, y_value, y_error):
 """
 Estimate an absolute angular error on the position (x_value, y_value)
 with the given errors.

 This is a pessimistic estimate, because we take sum of the error
 along the X and Y axes. Better might be to project them both back on
 to the major/minor axes of the elliptical fit, but this should do for
 now.
 """
 error_radius = 0
 try:
 centre_ra, centre_dec = wcs.p2s([x_value, y_value])
 # We check all possible combinations in case we have a nonlinear
 # WCS.
 for pixpos in [
 (x_value + x_error, y_value + y_error),
 (x_value - x_error, y_value + y_error),
 (x_value + x_error, y_value - y_error),
 (x_value - x_error, y_value - y_error)
]:
 error_ra, error_dec = wcs.p2s(pixpos)
 error_radius = max(
 error_radius,
 coordinates.angsep(centre_ra, centre_dec, error_ra, error_dec)
)
 except RuntimeError:
 # We get a runtime error from wcs.p2s if the errors place the
 # limits outside of the image, in which case we set the angular
 # uncertainty to infinity.
 error_radius = float('inf')
 return error_radius

[docs]def circular_mask(xdim, ydim, radius):
 """
 Returns a numpy array of shape (xdim, ydim). All points with radius of
 the centre are set to 0; outside that region, they are set to 1.
 """
 centre_x, centre_y = (xdim-1)/2.0, (ydim-1)/2.0
 x, y = numpy.ogrid[-centre_x:xdim-centre_x, -centre_y:ydim-centre_y]
 return x*x + y*y >= radius*radius

[docs]def generate_result_maps(data, sourcelist):
 """Return a source and residual image

 Given a data array (image) and list of sources, return two images, one
 showing the sources themselves and the other the residual after the
 sources have been removed from the input data.
 """
 residual_map = numpy.array(data) # array constructor copies by default
 gaussian_map = numpy.zeros(residual_map.shape)
 for src in sourcelist:
 # Include everything with 6 times the std deviation along the major
 # axis. Should be very very close to 100% of the flux.
 box_size = 6 * src.smaj.value / math.sqrt(2 * math.log(2))

 lower_bound_x = max(0, int(src.x.value - 1 - box_size))
 upper_bound_x = min(residual_map.shape[0], int(src.x.value - 1 + box_size))
 lower_bound_y = max(0, int(src.y.value - 1 - box_size))
 upper_bound_y = min(residual_map.shape[1], int(src.y.value - 1 + box_size))

 local_gaussian = gaussian(
 src.peak.value,
 src.x.value,
 src.y.value,
 src.smaj.value,
 src.smin.value,
 src.theta.value
)(
 numpy.indices(residual_map.shape)[0,lower_bound_x:upper_bound_x,lower_bound_y:upper_bound_y],
 numpy.indices(residual_map.shape)[1,lower_bound_x:upper_bound_x,lower_bound_y:upper_bound_y]
)

 gaussian_map[lower_bound_x:upper_bound_x, lower_bound_y:upper_bound_y] += local_gaussian
 residual_map[lower_bound_x:upper_bound_x, lower_bound_y:upper_bound_y] -= local_gaussian

 return gaussian_map, residual_map

[docs]def calculate_correlation_lengths(semimajor, semiminor):
 """Calculate the Condon correlation length

 In order to derive the error bars from Gauss fitting from the
 Condon (1997, PASP 109, 116C) formulae, one needs the so called
 correlation length. The Condon formulae assumes a circular area
 with diameter theta_N (in pixels) for the correlation. This was
 later generalized by Hopkins et al. (2003, AJ 125, 465) for
 correlation areas which are not axisymmetric.

 Basically one has theta_N^2 = theta_B*theta_b.

 Good estimates in general are:

 + theta_B = 2.0 * semimajar

 + theta_b = 2.0 * semiminor
 """

 return (2.0 * semimajor, 2.0 * semiminor)

[docs]def calculate_beamsize(semimajor, semiminor):
 """Calculate the beamsize based on the semi major and minor axes"""

 return numpy.pi * semimajor * semiminor

[docs]def fudge_max_pix(semimajor, semiminor, theta):
 """Estimate peak flux correction at pixel of maximum flux

 Previously, we adopted Rengelink's correction for the
 underestimate of the peak of the Gaussian by the maximum pixel
 method: fudge_max_pix = 1.06. See the WENSS paper
 (1997A&AS..124..259R) or his thesis. (The peak of the Gaussian
 is, of course, never at the exact center of the pixel, that's why
 the maximum pixel method will always underestimate it.)

 But, instead of just taking 1.06 one can make an estimate of the
 overall correction by assuming that the true peak is at a random
 position on the peak pixel and averaging over all possible
 corrections. This overall correction makes use of the beamshape,
 so strictly speaking only accurate for unresolved sources.
 """

 # scipy.integrate.dblquad: Computes a double integral
 # from the scipy docs:
 # Return the double (definite) integral of f1(y,x) from x=a..b
 # and y=f2(x)..f3(x).

 log20 = numpy.log(2.0)
 cos_theta = numpy.cos(theta)
 sin_theta = numpy.sin(theta)

 def landscape(y, x):
 up = math.pow(((cos_theta * x + sin_theta * y) / semiminor), 2)
 down = math.pow(((cos_theta * y - sin_theta * x) / semimajor), 2)
 return numpy.exp(log20 * (up + down))

 (correction, abserr) = scipy.integrate.dblquad(landscape, -0.5, 0.5,
 lambda ymin: -0.5, lambda ymax: 0.5)

 return correction

[docs]def maximum_pixel_method_variance(semimajor, semiminor, theta):
 """Estimate variance for peak flux at pixel position of maximum

 When we use the maximum pixel method, with a correction
 fudge_max_pix, there should be no bias, unless the peaks of the
 Gaussians are not randomly distributed, but relatively close to
 the centres of the pixels due to selection effects from detection
 thresholds.

 Disregarding the latter effect and noise, we can compute the
 variance of the maximum pixel method by integrating (the true
 flux-the average true flux)^2 = (the true flux-fudge_max_pix)^2
 over the pixel area and dividing by the pixel area (= 1). This
 is just equal to integral of the true flux^2 over the pixel area
 - fudge_max_pix^2.
 """

 # scipy.integrate.dblquad: Computes a double integral
 # from the scipy docs:
 # Return the double (definite) integral of f1(y,x) from x=a..b
 # and y=f2(x)..f3(x).

 log20 = numpy.log(2.0)
 cos_theta = numpy.cos(theta)
 sin_theta = numpy.sin(theta)

 def landscape(y, x):
 return numpy.exp(2.0 * log20 *
 (math.pow(((cos_theta * x + sin_theta * y) / semiminor), 2) +
 math.pow(((cos_theta * y - sin_theta * x) / semimajor), 2)
)
)

 (result, abserr) = scipy.integrate.dblquad(landscape, -0.5, 0.5, lambda ymin: -0.5, lambda ymax: 0.5)
 variance = result - math.pow(fudge_max_pix(semimajor, semiminor, theta), 2)

 return variance

[docs]def flatten(nested_list):
 """Flatten a nested list

 Nested lists are made in the deblending algorithm. They're
 awful. This is a piece of code I grabbed from
 http://www.daniweb.com/code/snippet216879.html.

 The output from this method is a generator, so make sure to turn
 it into a list, like this::

 flattened = list(flatten(nested)).
 """
 for elem in nested_list:
 if isinstance(elem, (tuple, list, numpy.ndarray)):
 for i in flatten(elem):
 yield i
 else:
 yield elem

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/sourcefinder/stats.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.sourcefinder.stats

"""
Generic utility routines for number handling and calculating (specific)
variances used by the TKP sourcefinder.
"""

import numpy
from numpy.ma import MaskedArray
from scipy.special import erf
from scipy.special import erfcinv
from .utils import calculate_correlation_lengths

CODE & NUMBER HANDLING ROUTINES
#
[docs]def var_helper(N):
 """Correct for the fact the rms noise is computed from a clipped
 distribution.

 That noise will always be lower than the noise from the complete
 distribution. The correction factor is a function of the computed
 rms noise only.
 """
 term1 = numpy.sqrt(2. * numpy.pi) * erf(N / numpy.sqrt(2.))
 term2 = 2. * N * numpy.exp(-N**2 / 2.)
 return term1 / (term1 - term2)

def indep_pixels(N, beam):
 corlengthlong, corlengthshort = calculate_correlation_lengths(
 beam[0], beam[1])
 correlated_area = 0.25 * numpy.pi * corlengthlong * corlengthshort
 return N / correlated_area

[docs]def unbiased_sigma(N_indep):
 """Calculate an unbiased sigma for using in sigma clipping.

 The formula below for cliplim is pretty subtle. Kappa, sigma
 clipping should be such that the noise is not biased by
 it. Consequently, the clipping boundaries should be such that
 exactly half an independent pixel should exceed it if the map were
 source free. A rigid boundary of 3 sigma is appropriate only if the
 number of independent pixels is about 185 (the number of
 independent pixels equals the number of pixels divided by the
 beamsize in pixels).

 The condition that kappa, sigma clipping may not bias the noise is
 translated in the formula below, using Gaussian statistics. A
 disadvantage of this is that more iterations of kappa, sigma
 clipping are needed, compared to 3 sigma clipping. However, the
 noise values derived are generally significantly different (lower)
 compared to 3 sigma clipping.
 """

 return 1.4142135623730951 * erfcinv(0.5 / N_indep)

[docs]def sigma_clip(data, beam, sigma=unbiased_sigma, max_iter=100,
 centref=numpy.median, distf=numpy.var, my_iterations=0,
 corr_clip=1.):
 """Iterative clipping

 By default, this performs clipping of the standard deviation about the
 median of the data. But by tweaking centref/distf, it could be much
 more general.

 max_iter sets the maximum number of iterations used.

 my_iterations is a counter for recursive operation of the code; leave it
 alone unless you really want to pretend to jump into the middle of a loop.

 sigma is subtle: if a callable is given, it is passed a copy of the data
 array and can calculate a clipping limit. See, for e.g., unbiased_sigma()
 defined above. However, if it isn't callable, sigma is assumed to just set
 a hard limit.

 To do: Improve documentation
 -Returns???
 -How does it make use of the beam? (It estimates the noise correlation)
 """
 if my_iterations >= max_iter:
 # Exceeded maximum number of iterations; return
 return data, my_iterations

 # Numpy 1.1 breaks std() for MaskedArray: see
 # <http://www.scipy.org/scipy/numpy/wiki/MaskedArray>.
 # MaskedArray.compressed() returns a 1-D array of non-masked data.
 if isinstance(data, MaskedArray):
 data = data.compressed()
 centre = centref(data)
 N = numpy.size(data)
 N_indep = indep_pixels(N, beam)
 if N_indep < 1:
 # This chunk is too small for processing; return an empty array.
 return numpy.array([]), 0, 0, 0

 # If sigma is callable, use it to dynamically calculate the clipping
 # limits.
 if callable(sigma):
 my_sigma = sigma(N_indep)
 else:
 my_sigma = sigma

 # distf=numpy.var is a sample variance with the factor N/(N-1)
 # already built in, N being the number of pixels. So, we are
 # going to remove that and replace it by N_indep/(N_indep-1)
 clipped_var = distf(data) * (N - 1.) * N_indep / (N * (N_indep - 1.))
 unbiased_var = corr_clip * clipped_var

 # There is an extra factor c4 needed to get a unbiased standard
 # deviation, unbiased if we disregard clipping bias, see
 # http://en.wikipedia.org/wiki/Unbiased_estimation_of_standard_deviation\
 # #Results_for_the_normal_distribution
 c4 = 1. - 0.25 / N_indep - 0.21875 / N_indep**2
 unbiased_std = numpy.sqrt(unbiased_var) / c4

 limit = my_sigma * unbiased_std

 newdata = data.compress(abs(data - centre) <= limit)

 if len(newdata) != len(data) and len(newdata) > 0:
 corr_clip = var_helper(my_sigma)
 my_iterations += 1
 return sigma_clip(newdata, beam, sigma, max_iter, centref, distf,
 my_iterations, corr_clip)
 else:
 return newdata, unbiased_std, centre, my_iterations

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_images/graphviz-6a57cf28e95fb206c5c1ab8b09ed54cb517e4e2f.png

_images/schema.png
Temprunningcat

RunningcatalogFlux

Tgeatabg)
runcat (assocskyrgn)

Runningcatalog

trigger_trsrc (newsource)

<c\

o m— “

xtsrc (smprunningcatabg)

(f_runcat (extractedsource)\drst (runmingeatalog)

Hran (assocskran)

runcat montor)

grgn (image)
Config
datasst (image)
\ =

and (runningeatabgfivg and temprunningeatabg)

lataset (tamprunningcatakog)
\MM -

datasst (monior)

_images/graphviz-700e4025736f9f6b2193903221f6c4a0fdac1c0c.png
4

(D
oL

Band 1

'ORC

(s

f

'

Band 2

'

_modules/tkp/quality/brightsource.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.quality.brightsource

import sys
import logging
import warnings
import casacore.quanta as qa
from io import BytesIO
from casacore.measures import measures
from tkp.utility.coordinates import unix2julian
from tkp.utility.redirect_stream import redirect_stream

logger = logging.getLogger(__name__)

targets = { 'CasA': {'ra' : 6.123487680622104, 'dec' : 1.0265153995604648},
 'CygA': {'ra' : 5.233686575770755, 'dec' : 0.7109409582180791},
 'TauA': {'ra' : 1.4596748493730913, 'dec' : 0.38422502335921294},
 'HerA': {'ra' : 4.4119087330382163, 'dec' : 0.087135562905816893},
 'VirA': {'ra' : 3.276086511413598, 'dec' : 0.21626589533567378},
 'SUN': None,
 'JUPITER': None,
 }

[docs]def check_for_valid_ephemeris(measures):
 """
 Checks whether the ephemeris data in use by ``measures`` is valid.
 ``measures`` should already have a valid reference frame.
 """
 # Note that we need to catch and parse the standard error produced by
 # casacore: there doesn't seem to be any other way of figuring this out.
 casacore_stderr = BytesIO()
 with redirect_stream(sys.__stderr__, casacore_stderr):
 # We assume the ephemeris is valid if it has position of the sun.
 measures.separation(
 measures.direction("SUN"), measures.direction("SUN")
)
 if "WARN" in casacore_stderr.getvalue():
 # casacore sends a warning to stderr if the ephemeris is invalid
 return False
 else:
 return True

[docs]def is_bright_source_near(accessor, distance=20):
 """
 Checks if there is any of the bright radio sources defined in targets
 near the center of the image.

 :param accessor: a TKP accessor
 :param distance: maximum allowed distance of a bright source (in degrees)
 :returns: False if not bright source is near, description of source if a
 bright source is near
 """

 #TODO: this function should be split up and tested more atomically
 # The measures object is our interface to casacore
 m = measures()

 # First, you need to set the reference frame -- ie, the time
 # -- used for the calculations to come. Time as MJD in seconds.
 starttime = int(accessor.taustart_ts.strftime("%s"))
 starttime_mjd = unix2julian(starttime)
 m.do_frame(m.epoch("UTC", "%ss" % starttime_mjd))

 # Now check and ensure the ephemeris in use is actually valid for this
 # data.
 if not check_for_valid_ephemeris(m):
 logger.warn("Bright source check failed due to invalid ephemeris")
 return "Invalid ephemeris"

 # Second, you need to set your image pointing.
 pointing = m.direction(
 "J2000", "%sdeg" % accessor.centre_ra, "%sdeg" % accessor.centre_decl
)

 for name, position in targets.items():
 if not position:
 direction = m.direction(name)
 else:
 direction = m.direction(
 "J2000", "%srad" % position['ra'], "%srad" % position['dec']
)
 separation = m.separation(pointing, direction).get_value("deg")
 if separation < distance:
 return "Pointing is %s degrees from %s." % (separation, name)
 return False

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/quality/restoringbeam.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.quality.restoringbeam

import tkp.quality
from tkp.utility import nice_format

[docs]def undersampled(semibmaj, semibmin):
 """
 We want more than 2 pixels across the beam major and minor axes.

 :param Semibmaj/semibmin: describe the beam size in pixels
 :returns: True if beam is undersampled, False otherwise
 """
 return semibmaj * 2 <= 1 or semibmin * 2 <= 1

[docs]def oversampled(semibmaj, semibmin, x=30):
 """
 It has been identified that having too many pixels across the restoring
 beam can lead to bad images, however further testing is required to
 determine the exact number.

 :param Semibmaj/semibmin: describe the beam size in pixels
 :returns: True if beam is oversampled, False otherwise
 """
 return semibmaj > x or semibmin > x

[docs]def highly_elliptical(semibmaj, semibmin, x=2.0):
 """
 If the beam is highly elliptical it can cause source association
 problems within TraP. Again further testing is required to determine
 exactly where the cut needs to be.

 :param Semibmaj/semibmin: describe the beam size in pixels
 :returns: True if the beam is highly elliptical, False otherwise
 """
 return semibmaj / semibmin > x

[docs]def not_full_fieldofview(nx, ny, cellsize, fov):
 """
 This has been raised as an interesting test, as if the full field of
 view (FOV) has not been imaged we may want to image the full dataset.
 The imaged FOV information can be estimated using the number of pixels
 and the size of the pixels.

 :param nx: number of pixels in x direction
 :param ny: number of pixels in y direction
 :returns: True if the full FOV is imaged, False otherwise
 """
 return nx * ny * (cellsize/3600) * (cellsize/3600) < fov

[docs]def infinite(smaj, smin, bpa):
 """
 If the beam is not correctly fitted by AWimager, one or more parameters
 will be recorded as infinite.

 :param smaj: Semi-major axis (arbitrary units)
 :param smin: Semi-minor axis
 :param bpa: Postion angle
 """
 return smaj == float('inf') or smin == float('inf') or bpa == float('inf')

[docs]def beam_invalid(semibmaj, semibmin, theta, oversampled_x=30, elliptical_x=2.0):
 """ Are the beam shape properties ok?

 :param semibmaj/semibmin: size of the beam in pixels

 :returns: True/False
 """

 formatted = "bmaj=%s and bmin=%s (pixels)" % (nice_format(semibmaj),
 nice_format(semibmin))

 if tkp.quality.restoringbeam.infinite(semibmaj, semibmin, theta):
 return "Beam infinte. %s" % formatted
 if tkp.quality.restoringbeam.undersampled(semibmaj, semibmin):
 return "Beam undersampled. %s" % formatted
 elif tkp.quality.restoringbeam.oversampled(semibmaj, semibmin,
 oversampled_x):
 return "Beam oversampled. %s" % formatted
 elif tkp.quality.restoringbeam.highly_elliptical(semibmaj, semibmin, elliptical_x):
 return "Beam too elliptical. %s" % formatted

 #TODO: this test has been disabled untill antonia solves issue discribed in #3802
 #elif not tkp.quality.restoringbeam.full_fieldofview(nx, ny, cellsize, fov):
 # return "Full field of view not imaged. Imaged FoV=XXdegrees, Observed FoV=XXdegrees"

 else:
 return False

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/quality/statistics.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.quality.statistics

"""
functions for calculating statistical properties of LOFAR images
"""
import numpy

[docs]def rms(data):
 """Returns the RMS of the data about the median.
 Args:
 data: a numpy array
 """
 data -= numpy.median(data)
 return numpy.sqrt(numpy.power(data, 2).sum()/len(data))

[docs]def clip(data, sigma=3):
 """Remove all values above a threshold from the array.
 Uses iterative clipping at sigma value until nothing more is getting clipped.
 Args:
 data: a numpy array
 """
 raveled = data.ravel()
 median = numpy.median(raveled)
 std = numpy.std(raveled)
 newdata = raveled[numpy.abs(raveled-median) <= sigma*std]
 if len(newdata) and len(newdata) != len(raveled):
 return clip(newdata, sigma)
 else:
 return newdata

[docs]def subregion(data, f=4):
 """Returns the inner region of a image, according to f.

 Resulting area is 4/(f*f) of the original.
 Args:
 data: a numpy array
 """
 x, y = data.shape
 return data[(x/2 - x/f):(x/2 + x/f), (y/2 - y/f):(y/2 + y/f)]

[docs]def rms_with_clipped_subregion(data, rms_est_sigma=3, rms_est_fraction=4):
 """
 RMS for quality-control.

 Root mean square value calculated from central region of an image.
 We sigma-clip the input-data in an attempt to exclude source-pixels
 and keep only background-pixels.

 Args:
 data: A numpy array
 rms_est_sigma: sigma value used for clipping
 rms_est_fraction: determines size of subsection, result will be
 1/fth of the image size where f=rms_est_fraction
 returns the rms value of a iterative sigma clipped subsection of an image
 """
 return rms(clip(subregion(data, rms_est_fraction), rms_est_sigma))

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/steps/misc.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.steps.misc

"""
Various subroutines used in the main pipeline flow.

We keep them separately to make the pipeline logic easier to read at a glance.
"""

import datetime
import ConfigParser
import logging
import os
from pprint import pprint

from collections import defaultdict

from tkp.config import parse_to_dict
from tkp.db.dump import dump_db

logger = logging.getLogger(__name__)

[docs]def load_job_config(pipe_config):
 """
 Locates the job_params.cfg in 'job_directory' and loads via ConfigParser.
 """
 job_directory = pipe_config['DEFAULT']['job_directory']
 job_config = ConfigParser.SafeConfigParser()
 job_config.read(os.path.join(job_directory, 'job_params.cfg'))
 return parse_to_dict(job_config)

def dump_configs_to_logdir(log_dir, job_config, pipe_config):
 if not os.path.isdir(log_dir):
 os.makedirs(log_dir)
 with open(os.path.join(log_dir, 'job_params.cfg'), 'w') as f:
 pprint(job_config, stream=f)
 with open(os.path.join(log_dir, 'pipeline.cfg'), 'w') as f:
 pprint(pipe_config, stream=f)

[docs]def check_job_configs_match(job_config_1, job_config_2):
 """
 Check if job configs match, except dataset_id which we expect to change.
 """
 jc_from_file = job_config_1.copy()
 jc_from_db = job_config_2.copy()
 del jc_from_file['persistence']['dataset_id']
 del jc_from_db['persistence']['dataset_id']
 return jc_from_file==jc_from_db

[docs]def setup_log_file(log_dir, debug=False, basename='trap.log'):
 """
 sets up a catch all logging handler which writes to `log_file`.

 :param log_file: log file to write
 :param debug: do we want debug level logging?
 :param basename: basename of the log file
 """
 if not os.path.isdir(log_dir):
 os.makedirs(log_dir)
 log_file = os.path.join(log_dir, basename)
 global_logger = logging.getLogger()
 hdlr = logging.FileHandler(log_file)
 global_logger.addHandler(hdlr)
 formatter = logging.Formatter(
 '%(asctime)s.%(msecs)03d %(levelname)s %(name)s: %(message)s',
 datefmt="%Y-%m-%d %H:%M:%S"
)
 hdlr.setFormatter(formatter)
 logger.info("logging to %s" % log_file)
 if debug:
 global_logger.setLevel(logging.DEBUG)
 else:
 global_logger.setLevel(logging.INFO)

def dump_database_backup(db_config, job_dir):
 if 'dump_backup_copy' in db_config:
 if db_config['dump_backup_copy']:
 output_name = os.path.join(
 job_dir, "%s_%s_%s.dump" % (
 db_config['host'], db_config['database'],
 datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
)
)
 dump_db(
 db_config['engine'], db_config['host'], str(db_config['port']),
 db_config['database'], db_config['user'], db_config['password'],
 output_name
)

[docs]def group_per_timestep(images):
 """
 groups a list of TRAP images per time step.

 Per time step the images are order per frequency and then per stokes. The
 eventual order is:

 (t1, f1, s1), (t1, f1, s2), (t1, f2, s1), (t1, f2, s2), (t2, f1, s1), ...)
 where:

 * t is time sorted by old to new
 * f is frequency sorted from low to high
 * s is stokes, sorted by ID as defined in the database schema

 Args:
 images (list): Images to group.

 Returns:
 list: List of tuples. The list is sorted by timestamp.
 Each tuple has the timestamp as a first element,
 and a list of images sorted by frequency and then stokes
 as the second element.

 """
 timestamp_to_images_map = defaultdict(list)
 for image in images:
 timestamp_to_images_map[image.taustart_ts].append(image)

 #List of (timestamp, [images_at_timestamp]) tuples:
 grouped_images = timestamp_to_images_map.items()

 # sort the tuples by first element (timestamps)
 grouped_images.sort()

 # and then sort the nested items per freq and stokes
 [l[1].sort(key=lambda x: (x.freq_eff, x.stokes)) for l in grouped_images]
 return grouped_images

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/quality/rms.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.quality.rms

from tkp.utility import nice_format

[docs]def rms_invalid(rms, noise, low_bound=1, high_bound=50):
 """
 Is the RMS value of an image outside the plausible range?

 :param rms: RMS value of an image, can be computed with
 tkp.quality.statistics.rms
 :param noise: Theoretical noise level of instrument, can be calculated with
 tkp.lofar.noise.noise_level
 :param low_bound: multiplied with noise to define lower threshold
 :param high_bound: multiplied with noise to define upper threshold
 :returns: True/False
 """
 if (rms < noise * low_bound) or (rms > noise * high_bound):
 ratio = rms / noise
 return "rms value (%s) is %s times theoretical noise (%s)" % \
 (nice_format(rms), nice_format(ratio), nice_format(noise))
 else:
 return False

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/testutil/decorators.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.testutil.decorators

import os
import unittest

def requires_database():
 if os.environ.get("TKP_DISABLEDB", False):
 return unittest.skip("Database functionality disabled in configuration")
 return lambda func: func

def requires_mongodb():
 if os.environ.get("TKP_DISABLEMONGODB", False):
 return unittest.skip("mongodb functionality disabled in configuration")
 return lambda func: func

def requires_data(*args):
 for filename in args:
 if not os.path.exists(filename):
 return unittest.skip("Test data (%s) not available" % filename)
 return lambda func: func

def requires_module(module_name):
 try:
 __import__(module_name)
 except ImportError:
 return unittest.skip("Required module (%s) not available" % module_name)
 return lambda func: func

def duration(test_duration):
 max_duration = float(os.environ.get("TKP_MAXTESTDURATION", False))
 if max_duration:
 if max_duration < test_duration:
 return unittest.skip(
 "Tests of duration > %s disabled with TKP_MAXTESTDURATION" %
 max_duration)
 return lambda func: func

[docs]def requires_test_db_managed():
 """
 This decorator is used to disable tests that do potentially low level
 database management operations like destroy and create. You can enable
 these tests by setting the TKP_TESTDBMANAGEMENT environment variable.
 """
 if os.environ.get('TKP_DBENGINE', 'postgresql') == 'monetdb':
 return unittest.skip("DB management tests not supported for Monetdb,"
 "must be tested manually.")

 if os.environ.get("TKP_TESTDBMANAGEMENT", False):
 return lambda func: func
 return unittest.skip("DB management tests disabled, TKP_TESTDBMANAGEMENT"
 " not set")

[docs]def high_ram_requirements():
 """
 Used to disable tests that break Travis due to out-of-memory issues.
 """
 if os.environ.get("TRAVIS", False):
 return unittest.skip("High-ram requirement unit-tests disabled on Travis")
 return lambda func: func

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/testutil/db_subs.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.testutil.db_subs

import logging
from collections import namedtuple

import datetime, math
import tkp.db
from tkp.db.generic import get_db_rows_as_dicts
from tkp.db.database import Database
from tkp.db.orm import DataSet, Image
from tkp.db import general as dbgen
from tkp.db import nulldetections
import tkp.testutil.data as testdata

import tkp.utility.coordinates as coords

ExtractedSourceTuple = namedtuple("ExtractedSourceTuple",
 ['ra', 'dec' ,
 'ra_fit_err' , 'dec_fit_err' ,
 'peak' , 'peak_err',
 'flux', 'flux_err',
 'sigma',
 'beam_maj', 'beam_min', 'beam_angle',
 'ew_sys_err', 'ns_sys_err',
 'error_radius', 'fit_type',
 'chisq', 'reduced_chisq'
])

[docs]def delete_test_database(database):
 """
 Use with caution!

 NB. Not the same as a freshly initialised database.
 All the sequence counters are offset.
 """
 if database.database.lower().find("test") != 0:
 raise ValueError("You tried to delete a database not prefixed with 'test'.\n"
 "Not recommended!")
 try:
 #cursor = database.connection.cursor()
 query = "DELETE from runningcatalog_flux"
 tkp.db.execute(query, commit=True)
 query = "DELETE from assocxtrsource"
 tkp.db.execute(query, commit=True)
 query = "DELETE from assocskyrgn"
 tkp.db.execute(query, commit=True)
 query = "DELETE from temprunningcatalog"
 tkp.db.execute(query, commit=True)
 query = "DELETE from newsource"
 tkp.db.execute(query, commit=True)
 query = "DELETE from runningcatalog"
 tkp.db.execute(query, commit=True)
 query = "DELETE from extractedsource"
 tkp.db.execute(query, commit=True)
 query = "DELETE from image"
 tkp.db.execute(query, commit=True)
 query = "DELETE from skyregion"
 tkp.db.execute(query, commit=True)
 query = "DELETE from dataset"
 tkp.db.execute(query, commit=True)

 except database.connection.Error:
 logging.warn("Query failed when trying to blank database\n"
 "Query: " + query)
 raise

[docs]def example_dbimage_data_dict(**kwargs):
 """
 Defines the canonical default image-data for unit-testing the database.

 By defining this in one place we make it simple to make changes.
 A subset of the default values may be overridden by passing the keys
 as keyword-args.

 Note that while RA, Dec and extraction radius are arbitrary,
 they should (usually) be close enough and large enough to enclose
 the RA and Dec of any fake source extractions inserted, since the
 association routines reject sources outside of designated extraction
 regions.
 """
 starttime = datetime.datetime(2012, 1, 1) # Happy new year
 time_spacing = datetime.timedelta(seconds=600)

 init_im_params = {'tau_time':300,
 'freq_eff':140e6,
 'freq_bw':2e6,
 'taustart_ts':starttime,
 'beam_smaj_pix': float(2.7),
 'beam_smin_pix': float(2.3),
 'beam_pa_rad': float(1.7),
 'deltax': float(-0.01111),
 'deltay': float(0.01111),
 'url':testdata.fits_file, # just an arbitrary existing fits file
 'centre_ra': 123., # Arbitarily picked.
 'centre_decl': 10., # Arbitarily picked.
 'xtr_radius': 10., # (Degrees)
 'rms_qc': 1.,
 'rms_min': 1e-4, #0.1mJy RMS
 'rms_max': 3e-4, #0.3mJy RMS
 'detection_thresh': 6,
 'analysis_thresh': 3
 }
 init_im_params.update(kwargs)
 return init_im_params

[docs]def generate_timespaced_dbimages_data(n_images,
 timedelta_between_images=datetime.timedelta(days=1),
 **kwargs):
 """
 Generate a list of image data dictionaries.

 The image-data dicts are identical except for having the taustart_ts
 advanced by a fixed timedelta for each entry.

 These can be used to create known entries in the image table, for
 unit-testing.

 A subset of the image-data defaults may be overridden by passing the relevant
 dictionary values as keyword args.
 """
 init_im_params = example_dbimage_data_dict(**kwargs)
 im_params = []
 for i in range(n_images):
 im_params.append(init_im_params.copy())
 init_im_params['taustart_ts'] += timedelta_between_images

 return im_params

[docs]def example_extractedsource_tuple(ra=123.123, dec=10.5, # Arbitrarily picked defaults
 ra_fit_err=5. / 3600, dec_fit_err=6. / 3600,
 peak=15e-3, peak_err=5e-4,
 flux=15e-3, flux_err=5e-4,
 sigma=15.,
 beam_maj=100., beam_min=100., beam_angle=45.,
 ew_sys_err=20., ns_sys_err=20.,
 error_radius=10.0, fit_type=0,
 chisq=5., reduced_chisq=1.5):
 """Generates an example 'fake extraction' for unit testing.

 Note that while RA and Dec are arbitrary, they should (usually) be close
 to the RA and Dec of any fake images used, since the association routines
 reject sources outside of designated extraction regions.
 """
 # NOTE: ra_fit_err & dec_fit_err are in degrees,
 # and ew_sys_err, ns_sys_err and error_radius are in arcsec.
 # The ew_uncertainty_ew is then the sqrt of the quadratic sum of the
 # systematic error and the error_radius
 return ExtractedSourceTuple(ra=ra, dec=dec,
 ra_fit_err=ra_fit_err, dec_fit_err=dec_fit_err,
 peak=peak, peak_err=peak_err,
 flux=flux, flux_err=flux_err,
 sigma=sigma,
 beam_maj=beam_maj, beam_min=beam_min,
 beam_angle=beam_angle,
 ew_sys_err=ew_sys_err, ns_sys_err=ns_sys_err,
 error_radius=error_radius, fit_type=fit_type,
 chisq=chisq, reduced_chisq=reduced_chisq
)

[docs]def deRuiter_radius(src1, src2):
 """Calculates the De Ruiter radius for two sources"""

 # The errors are the square root of the quadratic sum of
 # the systematic and fitted errors.
 src1_ew_uncertainty = math.sqrt(src1.ew_sys_err**2 + src1.error_radius**2) / 3600.
 src1_ns_uncertainty = math.sqrt(src1.ns_sys_err**2 + src1.error_radius**2) / 3600.
 src2_ew_uncertainty = math.sqrt(src2.ew_sys_err**2 + src2.error_radius**2) / 3600.
 src2_ns_uncertainty = math.sqrt(src2.ns_sys_err**2 + src2.error_radius**2) / 3600.

 ra_nom = ((src1.ra - src2.ra) * math.cos(math.radians(0.5 * (src1.dec + src2.dec))))**2
 ra_denom = src1_ew_uncertainty**2 + src2_ew_uncertainty**2
 ra_fac = ra_nom / ra_denom

 dec_nom = (src1.dec - src2.dec)**2
 dec_denom = src1_ns_uncertainty**2 + src2_ns_uncertainty**2
 dec_fac = dec_nom / dec_denom

 dr = math.sqrt(ra_fac + dec_fac)
 return dr

[docs]def lightcurve_metrics(src_list):
 """
 Calculates various metrics for a lightcurve made up of source extractions

 These are normally calculated internally in the database - this function
 serves as a sanity check, and is used for unit-testing purposes.

 Returns a list of dictionaries, the nth dict representing the value
 of the metrics after processing the first n extractions in the lightcurve.
 The dict keys mirror the column names in the database, to make
 cross-checking of results trivial.

 Final note: this function is very inefficient, recalculating over the
 first n extractions for each step. We could make it iterative, updating
 the weighted averages as we do in the database. However, this way
 provides a stronger cross-check that our iterative SQL approaches are
 correct - less chance of making the same mistakes in two languages!

 """
 metrics = []
 for i, src in enumerate(src_list):
 N = i + 1
 avg_int_flux = sum(src.flux for src in src_list[0:N]) / N
 avg_int_flux_sq = sum(src.flux**2 for src in src_list[0:N]) / N
 avg_w_f_int = sum(src.flux/src.flux_err**2 for src in src_list[0:N]) / N
 avg_w_f_int_sq = sum(src.flux**2/src.flux_err**2 for src in src_list[0:N]) / N
 avg_w = sum(1./src.flux_err**2 for src in src_list[0:N]) / N
 if N == 1:
 v = 0.0
 eta = 0.0
 else:
 v = math.sqrt(N * (avg_int_flux_sq - avg_int_flux**2) / (N - 1.)) / avg_int_flux
 eta = N * (avg_w_f_int_sq - avg_w_f_int**2/avg_w) / (N - 1.)

 metrics.append({
 'v_int': v,
 'eta_int': eta,
 'avg_f_int': avg_int_flux,
 'avg_f_int_sq': avg_int_flux_sq,
 'avg_f_int_weight': avg_w,
 'avg_weighted_f_int': avg_w_f_int,
 'avg_weighted_f_int_sq': avg_w_f_int_sq,
 'f_datapoints': N
 })
 return metrics

[docs]class MockSource(object):

 def __init__(self,
 template_extractedsource,
 lightcurve,
):
 """

 Defines a MockSource for generating mock source lists.

 (These can be used to test the database routines.)

 The lightcurve-dict entries define the times of non-zero
 flux (we do not support time-ranges here, discretely defined datapoints are
 sufficiently complex for the current unit-test suite). In this case,
 any undefined datetimes requested will produce a zero-flux measurement.
 A defaultdict may be supplied to simulate a steady-flux source.

 Args:
 template_extractedsource (ExtractedSourceTuple): This defines
 everything **except** the flux and significance of the
 extraction (i.e. position, fit error, beam properties, etc.).
 lightcurve (dict): A dict mapping datetime -> flux value [Jy].
 Any undefined datetimes will produce a zero-flux measurement.
 A defaultdict with constant-valued default may be supplied to
 represent a steady source, e.g.

 >>>MockSource(base_source, defaultdict(lambda:steady_flux_val))

 """
 self.base_source = template_extractedsource
 self.lightcurve = lightcurve

[docs] def value_at_dtime(self, dtime, image_rms):
 """Returns an `extractedsource` for a given datetime.

 If lightcurve is defined but does not contain the requested datetime,
 then peak, flux, sigma are all set to zero.
 """
 try:
 fluxval = self.lightcurve[dtime]
 except KeyError:
 fluxval = 0
 return self.base_source._replace(
 peak=fluxval,flux=fluxval,sigma=fluxval/image_rms)

[docs] def simulate_extraction(self, db_image, extraction_type,
 rms_attribute='rms_min'):
 """
 Simulate extraction process, returns extracted source or none.

 Uses the database image properties (extraction region, rms values)
 to determine if this source would be extracted in the given image,
 and return an extraction or None accordingly.

 Args:
 db_image (int): Database Image object.
 extraction_type: Valid values are 'blind', 'ff_nd'. If 'blind'
 then we only return an extracted source if the flux is above
 rms_value * detection_threshold.
 rms_attribute (str): Valid values are 'rms_min', 'rms_max'.
 Determines which rms value we use when deciding if this source
 will be seen in a blind extraction.

 Returns:
 ExtractedSourceTuple or None.
 """

 rms = getattr(db_image, rms_attribute)
 ex = self.value_at_dtime(db_image.taustart_ts, rms)

 #First check if source is in this image's extraction region:
 src_distance_degrees = coords.angsep(
 ex.ra, ex.dec,db_image.centre_ra, db_image.centre_decl) / 3600.0
 if src_distance_degrees > db_image.xtr_radius:
 return None

 if extraction_type == 'ff_nd':
 return ex
 elif extraction_type == 'blind':
 if ex.sigma > db_image.detection_thresh:
 return ex
 else:
 return None
 else:
 raise ValueError("Unrecognised extraction type: {}".format(
 extraction_type))

[docs]def insert_image_and_simulated_sources(dataset, image_params, mock_sources,
 new_source_sigma_margin,
 deruiter_radius=3.7):
 """
 Simulates the standard database image-and-source insertion logic using mock
 sources.

 Args:
 dataset: The dataset object
 image_params (dict): Contains the image properties.
 mock_sources (list of MockSource): The mock sources to simulate.
 new_source_sigma_margin (float): Parameter passed to source-association
 routines.
 deruiter_radius (float): Parameter passed to source-association
 routines.

 Returns:
 3-tuple (image, list of blind extractions, list of forced fits).

 """
 image = tkp.db.Image(data=image_params,dataset=dataset)
 blind_extractions=[]
 for src in mock_sources:
 xtr = src.simulate_extraction(image,extraction_type='blind')
 if xtr is not None:
 blind_extractions.append(xtr)
 image.insert_extracted_sources(blind_extractions,'blind')
 image.associate_extracted_sources(deRuiter_r=deruiter_radius,
 new_source_sigma_margin=new_source_sigma_margin)
 nd_ids_posns = nulldetections.get_nulldetections(image.id)
 nd_posns = [(ra,decl) for ids, ra, decl in nd_ids_posns]
 forced_fits = []
 for posn in nd_posns:
 for src in mock_sources:
 eps = 1e-13
 if (math.fabs(posn[0] - src.base_source.ra)<eps and
 math.fabs(posn[1] - src.base_source.dec)<eps):
 forced_fits.append(
 src.simulate_extraction(image,extraction_type='ff_nd')
)
 if len(nd_posns) != len(forced_fits):
 raise LookupError("Something went wrong, nulldetection position did "
 "not match a mock source.")
 #image.insert_extracted_sources(forced_fits, 'ff_nd')
 dbgen.insert_extracted_sources(image.id, forced_fits, 'ff_nd',
 ff_runcat_ids=[ids for ids, ra, decl in nd_ids_posns])
 nulldetections.associate_nd(image.id)

 return image, blind_extractions, forced_fits

[docs]def get_newsources_for_dataset(dsid):
 """
 Returns dicts representing all newsources for this dataset.

 Args:
 dsid: Dataset id

 Returns:
 list: (list of dicts) Each dict represents one newsource.
 The dict keys are all the columns in the newsources table, plus
 the 'taustart_ts' from the image table, which represents the
 trigger time.
 """
 qry = """\
 SELECT tr.id
 ,tr.previous_limits_image
 ,rc.id as runcat_id
 ,img.taustart_ts
 ,img.band
 ,ax.v_int
 ,ax.eta_int
 , ((ex.f_peak - limits_image.detection_thresh*limits_image.rms_min)
 / limits_image.rms_min) AS low_thresh_sigma
 , ((ex.f_peak - limits_image.detection_thresh*limits_image.rms_max)
 / limits_image.rms_max) AS high_thresh_sigma
 FROM newsource tr
 ,runningcatalog rc
 ,extractedsource ex
 ,image img
 ,assocxtrsource ax
 ,image limits_image
 WHERE rc.dataset = %(dsid)s
 AND tr.runcat = rc.id
 AND tr.trigger_xtrsrc = ex.id
 AND ex.image = img.id
 AND ax.runcat = rc.id
 AND ax.xtrsrc = ex.id
 AND tr.previous_limits_image = limits_image.id
 """
 cursor = Database().connection.cursor()
 cursor.execute(qry, {'dsid':dsid})
 newsource_rows_for_dataset = get_db_rows_as_dicts(cursor)
 return newsource_rows_for_dataset

[docs]def get_sources_filtered_by_final_variability(dataset_id,
 eta_min,
 v_min,
 # minpoints
):
 """
 Search the database to find high-variability lightcurves.

 Uses the variability associated with the last datapoint in a lightcurve
 as the key criteria.

 Args:
 dataset_id (int): Dataset to search
 eta_min (float): Minimum value of eta-index to return.
 v_min (float): Minimum value of V-index to return.

 Returns:
 list: (list of dicts) Each dict represents a runningcatalog_flux entry
 matching the filter criteria.

 """

 query = """\
SELECT rc.id as runcat_id
 ,image.band
 ,ax.v_int
 ,ax.eta_int
FROM runningcatalog as rc
 JOIN assocxtrsource as ax ON ax.runcat = rc.id
 JOIN extractedsource as ex ON ax.xtrsrc = ex.id
 JOIN image ON ex.image = image.id
 JOIN (
 -- Determine which are the most recent variability values
 -- for each lightcurve.
 SELECT
 a.runcat as runcat_id,
 i.band as band,
 max(i.taustart_ts) as MaxTimestamp
 FROM
 assocxtrsource a
 JOIN extractedsource e ON a.xtrsrc = e.id
 JOIN image i ON e.image = i.id
 GROUP BY
 runcat_id, band
) last_timestamps
 ON rc.id = last_timestamps.runcat_id
 AND image.band = last_timestamps.band
 AND image.taustart_ts = last_timestamps.MaxTimestamp
WHERE rc.dataset = %(dataset_id)s
 AND eta_int >= %(eta_min)s
 AND v_int >= %(v_min)s
"""
 cursor = tkp.db.Database().connection.cursor()
 cursor.execute(query, {'dataset_id': dataset_id,
 'eta_min':eta_min,
 'v_min':v_min,
 })
 transients = get_db_rows_as_dicts(cursor)

 return transients

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/accessors/lofaraccessor.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.accessors »

 Source code for tkp.accessors.lofaraccessor

from tkp.accessors.dataaccessor import RequiredAttributesMetaclass

[docs]class LofarAccessor(object):
 __metaclass__ = RequiredAttributesMetaclass
 """
 Additional metadata required for processing LOFAR images through QC
 checks.

 Attributes:
 antenna_set (string): Antenna set in use during observation.
 String; 'LBA_INNER', 'LBA_OUTER', 'LBA_SPARSE', 'LBA' or 'HBA'
 ncore(int): Number of core stations in use during observation.
 nremote(int): Number of remote stations in use during observation.
 nintl(int): Number of international stations in use during observation.
 subbandwidth(float): Width of a subband in Hz.
 subbands(int): Number of subbands.
 """
 _required_attributes = [
 'antenna_set',
 'ncore',
 'nremote',
 'nintl',
 'subbandwidth',
 'subbands',
]

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/testutil/db_queries.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.testutil.db_queries

"""
A collection of back end db query subroutines used for unittesting
"""
from tkp.db import execute
from tkp.db.generic import get_db_rows_as_dicts

def dataset_images(dataset_id, database=None):
 q = "SELECT id FROM image WHERE dataset=%(dataset)s LIMIT 1"
 args = {'dataset': dataset_id}
 cursor = execute(q, args)
 image_ids = [x[0] for x in cursor.fetchall()]
 return image_ids

def convert_to_cartesian(conn, ra, decl):
[docs] """Returns tuple (x,y,z)"""
 qry = """SELECT x,y,z FROM cartesian(%s, %s)"""
 curs = conn.cursor()
 curs.execute(qry, (ra, decl))
 return curs.fetchone()

def get_assoc_entries(db, runcat_id):

[docs] """
 Return the full history of variability indices for a runcat entry,
 ordered by time.
 """
 query = """\
 select a.runcat
 ,a.xtrsrc
 ,x.extract_type
 ,i.taustart_ts
 ,a.v_int
 ,a.eta_int
 ,a.f_datapoints
 ,a.type
 ,r.mon_src
 from assocxtrsource a
 ,extractedsource x
 ,image i
 ,runningcatalog r
 where a.xtrsrc = x.id
 and x.image = i.id
 and a.runcat = r.id
 and r.id = %(runcat_id)s
 order by i.taustart_ts
 """
 db.cursor.execute(query, {'runcat_id': runcat_id})
 return get_db_rows_as_dicts(db.cursor)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/accessors/dataaccessor.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.accessors »

 Source code for tkp.accessors.dataaccessor

import logging
from tkp.quality.statistics import rms_with_clipped_subregion
from tkp.accessors.requiredatts import RequiredAttributesMetaclass
from math import degrees, sqrt, sin, pi, cos

logger = logging.getLogger(__name__)

[docs]class DataAccessor(object):
 __metaclass__ = RequiredAttributesMetaclass

 _required_attributes = [
 'beam',
 'centre_ra',
 'centre_decl',
 'data',
 'freq_bw',
 'freq_eff',
 'pixelsize',
 'tau_time',
 'taustart_ts',
 'url',
 'wcs',
]

 def __init__(self):
 # Sphinx only picks up the class docstring if it's under an __init__
 # *le sigh*
 """
 Base class for accessors used with
 :class:`tkp.sourcefinder.image.ImageData`.

 Data accessors provide a uniform way for the ImageData class (ie,
 generic image representation) to access the various ways in which
 images may be stored (FITS files, arrays in memory, potentially HDF5,
 etc).

 This class cannot be instantiated directly, but should be subclassed
 and the abstract properties provided. Note that all abstract
 properties are required to provide a valid accessor.

 Additional properties may also be provided by subclasses. However,
 TraP components are required to degrade gracefully in the absence of
 this optional properties.

 The required attributes are as follows:

 Attributes:
 beam (tuple): Restoring beam. Tuple of three floats:
 semi-major axis (in pixels), semi-minor axis (pixels)
 and position angle (radians).
 centre_ra (float): Right ascension at the central pixel of the image.
 Units of J2000 decimal degrees.
 centre_decl (float): Declination at the central pixel of the image.
 Units of J2000 decimal degrees.
 data(numpy.ndarray): Two dimensional numpy.ndarray of floating point
 pixel values.
 (TODO: Definitive statement on orientation/transposing.)
 freq_bw(float): The frequency bandwidth of this image in Hz.
 freq_eff(float): Effective frequency of the image in Hz.
 That is, the mean frequency of all the visibility data which
 comprises this image.
 pixelsize(tuple): (x, y) tuple representing the size of a pixel
 along each axis in units of degrees.
 tau_time(float): Total time on sky in seconds.
 taustart_ts(float): Timestamp of the first integration which
 constitutes part of this image. MJD in seconds.
 url(string): A (string) URL representing the location of the image
 at time of processing.
 wcs(:class:`tkp.utility.coordinates.WCS`): An instance of
 :py:class:`tkp.utility.coordinates.WCS`,
 describing the mapping from data pixels to sky-coordinates.

 The class also provides some common functionality:
 static methods used for parsing datafiles, and an 'extract_metadata'
 function which provides key info in a simple dict format.
 """

[docs] def extract_metadata(self):
 """
 Massage the class attributes into a flat dictionary with
 database-friendly values.

 While rather tedious, this is easy to serialize and store separately
 to the actual image data.

 May be extended by subclasses to return additional data.
 """
 # some values are casted to a standard float since MonetDB cannot
 # handle numpy.float64
 return {
 'tau_time': self.tau_time,
 'freq_eff': self.freq_eff,
 'freq_bw': self.freq_bw,
 'taustart_ts': self.taustart_ts,
 'url': self.url,
 'beam_smaj_pix': self.beam[0],
 'beam_smin_pix': self.beam[1],
 'beam_pa_rad': self.beam[2],
 'centre_ra': self.centre_ra,
 'centre_decl': self.centre_decl,
 'deltax': self.pixelsize[0],
 'deltay': self.pixelsize[1],
 }

[docs] def parse_pixelsize(self):
 """

 Returns:
 - deltax: pixel size along the x axis in degrees
 - deltay: pixel size along the x axis in degrees

 """
 wcs = self.wcs
 # Check that pixels are square
 # (Would have to be pretty strange data for this not to be the case)
 assert wcs.cunit[0] == wcs.cunit[1]
 if wcs.cunit[0] == "deg":
 deltax = wcs.cdelt[0]
 deltay = wcs.cdelt[1]
 elif wcs.cunit[0] == "rad":
 deltax = degrees(wcs.cdelt[0])
 deltay = degrees(wcs.cdelt[1])
 else:
 raise ValueError("Unrecognised WCS co-ordinate system")

 #NB. What's a reasonable epsilon here?
 eps = 1e-7
 if abs(abs(deltax) - abs(deltay)) > eps:
 raise ValueError("Image WCS header suggests non-square pixels."
 "This is an untested use case, and may break things -"
 "specifically the skyregion tracking but possibly other stuff too.")
 return deltax, deltay

 @staticmethod
[docs] def degrees2pixels(bmaj, bmin, bpa, deltax, deltay):
 """
 Convert beam in degrees to beam in pixels and radians.
 For example Fits beam parameters are in degrees.

 Arguments:
 - bmaj: Beam major axis in degrees
 - bmin: Beam minor axis in degrees
 - bpa: Beam position angle in degrees
 - deltax: Pixel size along the x axis in degrees
 - deltay: Pixel size along the y axis in degrees

 Returns:
 - semimaj: Beam semi-major axis in pixels
 - semimin: Beam semi-minor axis in pixels
 - theta: Beam position angle in radians
 """
 semimaj = (bmaj / 2.) * (sqrt(
 (sin(pi * bpa / 180.)**2) / (deltax**2) +
 (cos(pi * bpa / 180.)**2) / (deltay**2))
)
 semimin = (bmin / 2.) * (sqrt(
 (cos(pi * bpa / 180.)**2) / (deltax**2) +
 (sin(pi * bpa / 180.)**2) / (deltay**2))
)
 theta = pi * bpa / 180
 return (semimaj, semimin, theta)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/accessors/detection.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.accessors »

 Source code for tkp.accessors.detection

import os.path
import pyfits
import logging
from collections import namedtuple
from casacore.tables import table as casacore_table
from casacore.images import image as casacore_image
from tkp.accessors.lofarcasaimage import LofarCasaImage
from tkp.accessors.lofarhdf5image import LofarHdf5Image
from tkp.accessors.fitsimage import FitsImage
from tkp.accessors.amicasaimage import AmiCasaImage
from tkp.accessors.lofarfitsimage import LofarFitsImage
from tkp.accessors.kat7casaimage import Kat7CasaImage

logger = logging.getLogger(__name__)

files that should be contained by a casa table
casafiles = ("table.dat", "table.f0", "table.f0_TSM0", "table.info",
 "table.lock")

We will take the first accessor for which the test returns True.
FitsTest = namedtuple('FitsTest', ['accessor', 'test'])
fits_type_mapping = [
 FitsTest(
 accessor=LofarFitsImage,
 test=lambda hdr: 'TELESCOP' in hdr and 'ANTENNA' in hdr and hdr.get('TELESCOP') == "LOFAR"
)
]

casa_telescope_keyword_mapping = {
 'LOFAR': LofarCasaImage,
 'KAT-7': Kat7CasaImage,
 'AMI-LA': AmiCasaImage,
}

[docs]def isfits(filename):
 """returns True if filename is a fits file"""
 if not os.path.isfile(filename):
 return False
 if filename[-4:].lower() != 'fits':
 return False
 try:
 with pyfits.open(filename):
 pass
 except IOError:
 return False
 return True

[docs]def iscasa(filename):
 """returns True if filename is a lofar casa directory"""
 if not os.path.isdir(filename):
 return False
 for file_ in casafiles:
 casafile = os.path.join(filename, file_)
 if not os.path.isfile(casafile):
 logger.debug("%s doesn't contain %s" % (filename, file_))
 return False
 try:
 table = casacore_table(filename.encode(), ack=False)
 table.close()
 except RuntimeError as e:
 logger.debug("directory looks casacore, but cannot open: %s" % str(e))
 return False
 return True

[docs]def islofarhdf5(filename):
 """returns True if filename is a hdf5 container"""
 if not os.path.isfile(filename):
 return False
 if filename[-2:].lower() != 'h5':
 return False
 try:
 casacore_image(filename)
 except RuntimeError:
 return False
 return True

[docs]def fits_detect(filename):
 """
 Detect which telescope produced FITS data, return corresponding accessor.

 Checks for known FITS image types where we expect additional metadata.
 If the telescope is unknown we default to a regular FitsImage.
 """
 with pyfits.open(filename) as hdulist:
 hdr = hdulist[0].header
 for fits_test in fits_type_mapping:
 if fits_test.test(hdr):
 return fits_test.accessor
 return FitsImage

[docs]def casa_detect(filename):
 """
 Detect which telescope produced CASA data, return corresponding accessor.

 Checks for known CASA table types where we expect additional metadata.
 If the telescope is unknown we return nothing.
 """
 table = casacore_table(filename.encode(), ack=False)
 telescope = table.getkeyword('coords')['telescope']
 return casa_telescope_keyword_mapping.get(telescope, None)

[docs]def detect(filename):
 """returns the accessor class that should be used to process filename"""
 if isfits(filename):
 return fits_detect(filename)
 elif iscasa(filename):
 return casa_detect(filename)
 elif islofarhdf5(filename):
 return LofarHdf5Image
 else:
 raise IOError("unsupported format: %s" % filename)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/utility/fits.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.utility »

 Source code for tkp.utility.fits

import os
import math
import shutil

import casacore
import casacore.images
import casacore.tables
import pyfits

import datetime

MJD0 = datetime.datetime(1858, 11, 17, 0, 0, 0)

[docs]def fix_reference_dec(imagename):
 """
 If the FITS file specified has a reference dec of 90 (or pi/2), make it
 infinitesimally less. This works around problems with ill-defined
 coordinate systems at the north celestial pole.
 """
 # TINY is an arbitrary constant which we regard as "far enough" away from
 # dec 90 (or pi/2). In theory, we ought to be able to us
 # sys.float_info.epsilon, but pyfits seems to round this when writing it
 # to a FITS file so that isn't quite generous enough.
 TINY = 1e-10
 with pyfits.open(imagename, mode='update') as ff:
 # The FITS standard (version 3.0, July 2008) tells us "For angular
 # measurements given as floating-point values [...] the units should
 # be degrees". We therefore use that as a default, but handle radians
 # too, just to be on the safe side.
 critical_value = 90.0 # degrees
 if "CUNIT2" in ff[0].header and ff[0].header["CUNIT2"] == "rad":
 critical_value = math.pi/2 # radians

 ref_dec = ff[0].header['CRVAL2']
 if (critical_value - abs(ref_dec)) < TINY:
 ff[0].header['CRVAL2'] = ref_dec * (1 - TINY)
 ff.flush()

[docs]def convert(casa_image, ms, fits_filename=None):
 """Convert a CASA image to FITS, taking care of header keywords

 :argument casa_image: CASA image
 :type casa_image: casacore.images.image
 :argument ms: CASA measurement set
 :type ms: casacore.tables.table

 :keyword fits_filename: FITS output filename
 :type fits_filename: str

 :returns: None

 """

 if fits_filename is None:
 fits_filename = os.path.splitext(casa_image)[0] + ".fits"

 # To do:
 # It would probably be more efficient (less IO)
 # to create a pyfits HDU object from the casa image data,
 # but I'm not sure how correct the coordinate conversion
 # would be.
 # Currently using the easy way
 image = casacore.images.image(casa_image)
 image.tofits(fits_filename)
 hdulist = pyfits.open(fits_filename, mode='update')
 header = hdulist[0].header
 # Obtain header info from original MS
 t0 = casacore.tables.table(ms, ack=False)
 header.update('OBS-ID', t0.getcol('OBSERVATION_ID')[0])

 t = casacore.tables.table(t0.getkeyword('SPECTRAL_WINDOW'), ack=False)
 header.update('SUBBAND', t.getcol('NAME')[0])
 header.update('REFFREQ', t.getcol('REF_FREQUENCY')[0])
 header.update('BANDWIDT', t.getcol('TOTAL_BANDWIDTH')[0])
 header.update('FREQUNIT', 'MHz')

 t = casacore.tables.table(t0.getkeyword('FIELD'), ack=False)
 phasedir = t.getcol('PHASE_DIR')
 phase_ra = phasedir[0][0][0] * 180 / math.pi
 if phase_ra < 0:
 phase_ra += 360
 header.update('phasera', phase_ra, 'degrees')
 header.update('phasedec', phasedir[0][0][1] * 180 / math.pi, 'degrees')
 header.update('field', t.getcol('NAME')[0])

 # When the MS we access is actually a slice through a current MS,
 # we can't rely on the timing information in the header to be correct
 # Instead, we obtain the actual timing information from the TIME
 # column in the actual data table.
 time_table = t0.query("", sortlist="TIME", limit=1, columns="TIME")
 start_time = MJD0 + datetime.timedelta(0, time_table.getcol('TIME')[0], 0)
 time_table = t0.query("", sortlist="-TIME", limit=1, columns="TIME")
 end_time = MJD0 + datetime.timedelta(0, time_table.getcol('TIME')[0], 0)
 mid_time = start_time + (end_time - start_time) / 2
 header.update('date-obs', start_time.strftime("%Y-%m-%dT%H:%M:%S"),
 "Start time of observation")
 header.update('STARTUTC', start_time.strftime("%Y-%m-%dT%H:%M:%S"),
 "Start time of observation")
 header.update('END_UTC', end_time.strftime("%Y-%m-%dT%H:%M:%S"),
 "End time of observation")
 header.update('MID_UTC', mid_time.strftime("%Y-%m-%dT%H:%M:%S"),
 "Mid time of observation")

 t = casacore.tables.table(t0.getkeyword('OBSERVATION'), ack=False)
 header.update('OBSERVER', t.getcol('OBSERVER')[0])
 header.update('TELESCOP', t.getcol('TELESCOPE_NAME')[0])

 header.update('PIPENAME', 'TRAP')
 header.update('PIPE_VER', '0.1')

 hdulist.close()

[docs]def combine(fitsfiles, outputfile, method="average"):
 """Combine a set of FITS files, taking care of header keywords

 :argument fitsfiles: FITS filenames to combine
 :type fitsfiles: list
 :argument outputfile: output FITS filename
 :type outputfile: str

 :keyword method: average or sum the images
 :type method: str

 :returns: None

 """

 if method is None:
 return
 N = len(fitsfiles)
 if N == 1:
 shutil.copyfile(fitsfiles[0], outputfile)
 return
 hdulist0 = pyfits.open(fitsfiles[0])
 header0 = hdulist0[0].header
 data = hdulist0[0].data
 freqs = [header0['reffreq']]
 header0.update('orig0', os.path.basename(fitsfiles[0]),
 'original fitsfile')
 for i, filename in enumerate(fitsfiles[1:]):
 with pyfits.open(filename) as hdulist:
 header = hdulist[0].header
 data += hdulist[0].data
 freqs.append(header['reffreq'])
 header0.update(
 'orig%d' % (i + 1), os.path.basename(filename),
 'original fitsfile')
 if method == "average":
 data /= float(N)

 minfreq, maxfreq = min(freqs), max(freqs)
 hdu = pyfits.PrimaryHDU(data)
 reffreq = (minfreq + maxfreq) / 2
 bandwidth = maxfreq - minfreq
 header0.update('reffreq', reffreq,
 'reference frequency')
 header0.update('bandwidt', bandwidth,
 'estimated bandwidth')
 header0.update('FREQ_MIN', minfreq,
 'minimum frequency')
 header0.update('FREQ_MAX', maxfreq,
 'maximum frequency')
 # frequencies are stored in WCS coords (dimension 4),
 # but since we've copied those from the first image,
 # they need to be updated
 header0.update('crval4', reffreq)
 header0.update('cdelt4', bandwidth)
 hdu.header = header0
 hdulist = pyfits.HDUList([hdu])
 hdulist.writeto(outputfile)
 hdulist.close()
 hdulist0.close()

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/utility/coordinates.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.utility »

 Source code for tkp.utility.coordinates

#
LOFAR Transients Key Project
"""
General purpose astronomical coordinate handling routines.
"""

import sys
import math
import pywcs
import logging
import datetime
import pytz

from casacore.measures import measures
from casacore.quanta import quantity

logger = logging.getLogger(__name__)

Note that we take a +ve longitude as WEST.
CORE_LAT = 52.9088
CORE_LON = -6.8689

ITRF position of CS002
Should be a good approximation for anything refering to the LOFAR core.
ITRF_X = 3826577.066110000
ITRF_Y = 461022.947639000
ITRF_Z = 5064892.786

Useful constants
SECONDS_IN_HOUR = 60**2
SECONDS_IN_DAY = 24 * SECONDS_IN_HOUR

[docs]def julian_date(time=None, modified=False):
 """
 Calculate the Julian date at a given timestamp.

 Args:
 time (datetime.datetime): Timestamp to calculate JD for.
 modified (bool): If True, return the Modified Julian Date:
 the number of days (including fractions) which have elapsed between
 the start of 17 November 1858 AD and the specified time.
 Returns:
 float: Julian date value.
 """
 if not time:
 time = datetime.datetime.now(pytz.utc)
 mjdstart = datetime.datetime(1858, 11, 17, tzinfo=pytz.utc)
 mjd = time - mjdstart
 mjd_daynumber = (mjd.days + mjd.seconds / (24. * 60**2) +
 mjd.microseconds / (24. * 60**2 * 1000**2))
 if modified:
 return mjd_daynumber
 return 2400000.5 + mjd_daynumber

[docs]def mjd2datetime(mjd):
 """
 Convert a Modified Julian Date to datetime via 'unix time' representation.

 NB 'unix time' is defined by the casacore/casacore package.
 """
 q = quantity("%sd" % mjd)
 return datetime.datetime.fromtimestamp(q.to_unix_time())

[docs]def mjd2lst(mjd, position=None):
 """
 Converts a Modified Julian Date into Local Apparent Sidereal Time in
 seconds at a given position. If position is None, we default to the
 reference position of CS002.

 mjd -- Modified Julian Date (float, in days)
 position -- Position (casacore measure)
 """
 dm = measures()
 position = position or dm.position(
 "ITRF", "%fm" % ITRF_X, "%fm" % ITRF_Y, "%fm" % ITRF_Z
)
 dm.do_frame(position)
 last = dm.measure(dm.epoch("UTC", "%fd" % mjd), "LAST")
 fractional_day = last['m0']['value'] % 1
 return fractional_day * 24 * SECONDS_IN_HOUR

[docs]def mjds2lst(mjds, position=None):
 """
 As mjd2lst(), but takes an argument in seconds rather than days.

 Args:
 mjds (float):Modified Julian Date (in seconds)
 position (casacore measure): Position for LST calcs
 """
 return mjd2lst(mjds/SECONDS_IN_DAY, position)

[docs]def jd2lst(jd, position=None):
 """
 Converts a Julian Date into Local Apparent Sidereal Time in seconds at a
 given position. If position is None, we default to the reference position
 of CS002.

 Args:
 jd (float): Julian Date
 position (casacore measure): Position for LST calcs.
 """
 return mjd2lst(jd - 2400000.5, position)

NB: datetime is not sensitive to leap seconds.
However, leap seconds were first introduced in 1972.
So there are no leap seconds between the start of the
Modified Julian epoch and the start of the Unix epoch,
so this calculation is safe.
#julian_epoch = datetime.datetime(1858, 11, 17)
#unix_epoch = datetime.datetime(1970, 1, 1, 0, 0)
#delta = unix_epoch - julian_epoch
#deltaseconds = delta.total_seconds()
#unix_epoch = 3506716800

The above is equivalent to this:

unix_epoch = quantity("1970-01-01T00:00:00").get_value('s')

[docs]def julian2unix(timestamp):
 """
 Convert a modifed julian timestamp (number of seconds since 17 November
 1858) to Unix timestamp (number of seconds since 1 January 1970).

 Args:
 timestamp (numbers.Number): Number of seconds since the Unix epoch.

 Returns:
 numbers.Number: Number of seconds since the modified Julian epoch.
 """
 return timestamp - unix_epoch

[docs]def unix2julian(timestamp):
 """
 Convert a Unix timestamp (number of seconds since 1 January 1970) to a
 modified Julian timestamp (number of seconds since 17 November 1858).

 Args:
 timestamp (numbers.Number): Number of seconds since the modified
 Julian epoch.

 Returns:
 numbers.Number: Number of seconds since the Unix epoch.
 """
 return timestamp + unix_epoch

[docs]def sec2deg(seconds):
 """Seconds of time to degrees of arc"""
 return 15.0 * seconds / 3600.0

[docs]def sec2days(seconds):
 """Seconds to number of days"""
 return seconds / (24.0 * 3600)

[docs]def sec2hms(seconds):
 """Seconds to hours, minutes, seconds"""
 hours, seconds = divmod(seconds, 60**2)
 minutes, seconds = divmod(seconds, 60)
 return (int(hours), int(minutes), seconds)

[docs]def altaz(mjds, ra, dec, lat=CORE_LAT):
 """Calculates the azimuth and elevation of source from time and position
 on sky. Takes MJD in seconds and ra, dec in degrees. Returns (alt, az) in
 degrees."""

 # compute hour angle in degrees
 ha = mjds2lst(mjds) - ra
 if (ha < 0):
 ha = ha + 360

 # convert degrees to radians
 ha, dec, lat = [math.radians(value) for value in (ha, dec, lat)]

 # compute altitude in radians
 sin_alt = (math.sin(dec) * math.sin(lat) +
 math.cos(dec) * math.cos(lat) * math.cos(ha))
 alt = math.asin(sin_alt)

 # compute azimuth in radians
 # divide by zero error at poles or if alt = 90 deg
 cos_az = ((math.sin(dec) - math.sin(alt) * math.sin(lat)) /
 (math.cos(alt) * math.cos(lat)))
 az = math.acos(cos_az)
 # convert radians to degrees
 hrz_altitude, hrz_azimuth = [math.degrees(value) for value in (alt, az)]
 # choose hemisphere
 if (math.sin(ha) > 0):
 hrz_azimuth = 360 - hrz_azimuth

 return hrz_altitude, hrz_azimuth

[docs]def ratohms(radegs):
 """Convert RA in decimal degrees format to hours, minutes,
 seconds format.

 Keyword arguments:
 radegs -- RA in degrees format

 Return value:
 ra -- tuple of 3 values, [hours,minutes,seconds]

 """

 radegs %= 360
 raseconds = radegs * 3600 / 15.0
 return sec2hms(raseconds)

[docs]def dectodms(decdegs):
 """Convert Declination in decimal degrees format to hours, minutes,
 seconds format.

 Keyword arguments:
 decdegs -- Dec. in degrees format

 Return value:
 dec -- list of 3 values, [degrees,minutes,seconds]

 """

 sign = -1 if decdegs < 0 else 1
 decdegs = abs(decdegs)
 if decdegs > 90:
 raise ValueError("coordinate out of range")
 decd = int(decdegs)
 decm = int((decdegs - decd) * 60)
 decs = (((decdegs - decd) * 60) - decm) * 60
 # Necessary because of potential roundoff errors
 if decs - 60 > -1e-7:
 decm += 1
 decs = 0
 if decm == 60:
 decd += 1
 decm = 0
 if decd > 90:
 raise ValueError("coordinate out of range")

 if sign == -1:
 if decd == 0:
 if decm == 0:
 decs = -decs
 else:
 decm = -decm
 else:
 decd = -decd
 return (decd, decm, decs)

[docs]def propagate_sign(val1, val2, val3):
 """
 casacore (reasonably enough) demands that a minus sign (if required)
 comes at the start of the quantity. Thus "-0D30M" rather than "0D-30M".
 Python regards "-0" as equal to "0"; we need to split off a separate sign
 field.

 If more than one of our inputs is negative, it's not clear what the user
 meant: we raise.

 Args:
 val1(float): (,val2,val3) input values (hour/min/sec or deg/min/sec)

 Returns:
 tuple: "+" or "-" string denoting sign,
 val1, val2, val3 (numeric) denoting absolute values of inputs.
 """
 signs = [x<0 for x in (val1, val2, val3)]
 if signs.count(True) == 0:
 sign = "+"
 elif signs.count(True) == 1:
 sign, val1, val2, val3 = "-", abs(val1), abs(val2), abs(val3)
 else:
 raise ValueError("Too many negative coordinates")
 return sign, val1, val2, val3

[docs]def hmstora(rah, ram, ras):
 """Convert RA in hours, minutes, seconds format to decimal
 degrees format.

 Keyword arguments:
 rah,ram,ras -- RA values (h,m,s)

 Return value:
 radegs -- RA in decimal degrees

 """
 sign, rah, ram, ras = propagate_sign(rah, ram, ras)
 ra = quantity("%s%dH%dM%f" % (sign, rah, ram, ras)).get_value()
 if abs(ra) >= 360:
 raise ValueError("coordinates out of range")
 return ra

[docs]def dmstodec(decd, decm, decs):
 """Convert Dec in degrees, minutes, seconds format to decimal
 degrees format.

 Keyword arguments:
 decd, decm, decs -- list of Dec values (d,m,s)

 Return value:
 decdegs -- Dec in decimal degrees

 """
 sign, decd, decm, decs = propagate_sign(decd, decm, decs)
 dec = quantity("%s%dD%dM%f" % (sign, decd, decm, decs)).get_value()
 if abs(dec) > 90:
 raise ValueError("coordinates out of range")
 return dec

[docs]def angsep(ra1, dec1, ra2, dec2):
 """Find the angular separation of two sources, in arcseconds,
 using the proper spherical trig formula

 Keyword arguments:
 ra1,dec1 - RA and Dec of the first source, in decimal degrees
 ra2,dec2 - RA and Dec of the second source, in decimal degrees

 Return value:
 angsep - Angular separation, in arcseconds

 """

 b = (math.pi / 2) - math.radians(dec1)
 c = (math.pi / 2) - math.radians(dec2)
 temp = (math.cos(b) * math.cos(c)) + (math.sin(b) * math.sin(c) * math.cos(math.radians(ra1 - ra2)))

 # Truncate the value of temp at +- 1: it makes no sense to do math.acos()
 # of a value outside this range, but occasionally we might get one due to
 # rounding errors.
 if abs(temp) > 1.0:
 temp = 1.0 * cmp(temp, 0)

 return 3600 * math.degrees(math.acos(temp))

[docs]def alphasep(ra1, ra2, dec1, dec2):
 """Find the angular separation of two sources in RA, in arcseconds

 Keyword arguments:
 ra1,dec1 - RA and Dec of the first source, in decimal degrees
 ra2,dec2 - RA and Dec of the second source, in decimal degrees

 Return value:
 angsep - Angular separation, in arcseconds

 """

 return 3600 * (ra1 - ra2) * math.cos(math.radians((dec1 + dec2) / 2.0))

[docs]def deltasep(dec1, dec2):
 """Find the angular separation of two sources in Dec, in arcseconds

 Keyword arguments:
 dec1 - Dec of the first source, in decimal degrees
 dec2 - Dec of the second source, in decimal degrees

 Return value:
 angsep - Angular separation, in arcseconds

 """

 return 3600 * (dec1 - dec2)

Find angular separation in Dec of 2 positions, in arcseconds

[docs]def alpha(l, m, alpha0, delta0):
 """Convert a coordinate in l,m into an coordinate in RA

 Keyword arguments:
 l,m -- direction cosines, given by (offset in cells) x cellsi (radians)
 alpha_0, delta_0 -- centre of the field

 Return value:
 alpha -- RA in decimal degrees
 """
 return (alpha0 + (math.degrees(math.atan2(l, (
 (math.sqrt(1 - (l*l) - (m*m)) * math.cos(math.radians(delta0))) -
 (m * math.sin(math.radians(delta0))))))))

[docs]def alpha_inflate(theta, decl):
 """Compute the ra expansion for a given theta at a given declination

 Keyword arguments:
 theta, decl are both in decimal degrees.

 Return value:
 alpha -- RA inflation in decimal degrees

 For a derivation, see MSR TR 2006 52, Section 2.1
 http://research.microsoft.com/apps/pubs/default.aspx?id=64524

 """
 if abs(decl) + theta > 89.9:
 return 180.0
 else:
 return math.degrees(abs(math.atan(math.sin(math.radians(theta)) / math.sqrt(abs(math.cos(math.radians(decl - theta)) * math.cos(math.radians(decl + theta)))))))

Find the RA of a point in a radio image, given l,m and field centre

[docs]def delta(l, m, delta0):
 """Convert a coordinate in l, m into an coordinate in Dec

 Keyword arguments:
 l, m -- direction cosines, given by (offset in cells) x cellsi (radians)
 alpha_0, delta_0 -- centre of the field

 Return value:
 delta -- Dec in decimal degrees
 """
 return math.degrees(math.asin(m * math.cos(math.radians(delta0)) +
 (math.sqrt(1 - (l*l) - (m*m)) *
 math.sin(math.radians(delta0)))))

[docs]def l(ra, dec, cra, incr):
 """Convert a coordinate in RA,Dec into a direction cosine l

 Keyword arguments:
 ra,dec -- Source location
 cra -- RA centre of the field
 incr -- number of degrees per pixel (negative in the case of RA)

 Return value:
 l -- Direction cosine

 """
 return ((math.cos(math.radians(dec)) * math.sin(math.radians(ra - cra))) /
 (math.radians(incr)))

[docs]def m(ra, dec, cra, cdec, incr):
 """Convert a coordinate in RA,Dec into a direction cosine m

 Keyword arguments:
 ra,dec -- Source location
 cra,cdec -- centre of the field
 incr -- number of degrees per pixel

 Return value:
 m -- direction cosine

 """
 return ((math.sin(math.radians(dec)) * math.cos(math.radians(cdec))) -
 (math.cos(math.radians(dec)) * math.sin(math.radians(cdec)) *
 math.cos(math.radians(ra-cra)))) / math.radians(incr)

[docs]def lm_to_radec(ra0, dec0, l, m):
 """
 Find the l direction cosine in a radio image, given an RA and Dec and the
 field centre
 """
 # This function should be the inverse of radec_to_lmn, but it is
 # not. There is likely an error here.

 sind0 = math.sin(dec0)
 cosd0 = math.cos(dec0)
 dl = l
 dm = m
 d0 = dm * dm * sind0 * sind0 + dl * dl - 2 * dm * cosd0 * sind0
 sind = math.sqrt(abs(sind0 * sind0 - d0))
 cosd = math.sqrt(abs(cosd0 * cosd0 + d0))
 if (sind0 > 0):
 sind = abs(sind)
 else:
 sind = -abs(sind)

 dec = math.atan2(sind, cosd)

 if l != 0:
 ra = math.atan2(-dl, (cosd0 - dm * sind0)) + ra0
 else:
 ra = math.atan2((1e-10), (cosd0 - dm * sind0)) + ra0

 # Calculate RA,Dec from l,m and phase center. Note: As done in
 # Meqtrees, which seems to differ from l, m functions above. Meqtrees
 # equation may have problems, judging from my difficulty fitting a
 # fringe to L4086 data. Pandey's equation is now used in radec_to_lmn

 return (ra, dec)

[docs]def radec_to_lmn(ra0, dec0, ra, dec):
 l = math.cos(dec) * math.sin(ra - ra0)
 sind0 = math.sin(dec0)
 if sind0 != 0:
 # from pandey; gives same results for casa and cyga
 m = (math.sin(dec) * math.cos(dec0) -
 math.cos(dec) * math.sin(dec0) * math.cos(ra - ra0))
 else:
 m = 0
 n = math.sqrt(1 - l**2 - m**2)
 return (l, m, n)

[docs]def eq_to_gal(ra, dec):
 """Find the Galactic co-ordinates of a source given the equatorial
 co-ordinates

 Keyword arguments:
 (alpha,delta) -- RA, Dec in decimal degrees

 Return value:
 (l,b) -- Galactic longitude and latitude, in decimal degrees

 """
 dm = measures()

 result = dm.measure(
 dm.direction("J200", "%fdeg" % ra, "%fdeg" % dec),
 "GALACTIC"
)
 lon_l = math.degrees(result['m0']['value']) % 360 # 0 < ra < 360
 lat_b = math.degrees(result['m1']['value'])

 return lon_l, lat_b

[docs]def gal_to_eq(lon_l, lat_b):
 """Find the Galactic co-ordinates of a source given the equatorial
 co-ordinates

 Keyword arguments:
 (l, b) -- Galactic longitude and latitude, in decimal degrees

 Return value:
 (alpha, delta) -- RA, Dec in decimal degrees

 """
 dm = measures()

 result = dm.measure(
 dm.direction("GALACTIC", "%fdeg" % lon_l, "%fdeg" % lat_b),
 "J2000"
)
 ra = math.degrees(result['m0']['value']) % 360 # 0 < ra < 360
 dec = math.degrees(result['m1']['value'])

 return ra, dec

[docs]def eq_to_cart(ra, dec):
 """Find the cartesian co-ordinates on the unit sphere given the eq. co-ords.

 ra, dec should be in degrees.
 """
 return (math.cos(math.radians(dec)) * math.cos(math.radians(ra)), # Cartesian x
 math.cos(math.radians(dec)) * math.sin(math.radians(ra)), # Cartesian y
 math.sin(math.radians(dec))) # Cartesian z

[docs]class CoordSystem(object):
 """A container for constant strings representing different coordinate
 systems."""
 FK4 = "B1950 (FK4)"
 FK5 = "J2000 (FK5)"

[docs]def coordsystem(name):
 """Given a string, return a constant from class CoordSystem."""
 mappings = {
 'j2000': CoordSystem.FK5,
 'fk5': CoordSystem.FK5,
 CoordSystem.FK5.lower(): CoordSystem.FK5,
 'b1950': CoordSystem.FK4,
 'fk4': CoordSystem.FK4,
 CoordSystem.FK4.lower(): CoordSystem.FK4
 }
 return mappings[name.lower()]

[docs]def convert_coordsystem(ra, dec, insys, outsys):
 """
 Convert RA & dec (given in decimal degrees) between equinoxes.
 """
 dm = measures()

 if insys == CoordSystem.FK4:
 insys = "B1950"
 elif insys == CoordSystem.FK5:
 insys = "J2000"
 else:
 raise Exception("Unknown Coordinate System")

 if outsys == CoordSystem.FK4:
 outsys = "B1950"
 elif outsys == CoordSystem.FK5:
 outsys = "J2000"
 else:
 raise Exception("Unknown Coordinate System")

 result = dm.measure(
 dm.direction(insys, "%fdeg" % ra, "%fdeg" % dec),
 outsys
)

 ra = math.degrees(result['m0']['value']) % 360 # 0 < ra < 360
 dec = math.degrees(result['m1']['value'])

 return ra, dec

[docs]class WCS(object):
 """
 Wrapper around pywcs.WCS.

 This is primarily to preserve API compatibility with the earlier,
 home-brewed python-wcslib wrapper. It includes:

 * A fix for the reference pixel lying at the zenith;
 * Raises ValueError if coordinates are invalid.
 """
 # ORIGIN is the upper-left corner of the image. pywcs supports both 0
 # (NumPy, C-style) or 1 (FITS, Fortran-style). The TraP uses 1.
 ORIGIN = 1

 # We can set these attributes on the pywcs.WCS().wcs object to configure
 # the coordinate system.
 WCS_ATTRS = ("crpix", "cdelt", "crval", "ctype", "cunit", "crota")

 def __init__(self):
 # Currently, we only support two dimensional images.
 self.wcs = pywcs.WCS(naxis=2)

 def __setattr__(self, attrname, value):
 if attrname in self.WCS_ATTRS:
 # Account for arbitrary coordinate rotations in images pointing at
 # the North Celestial Pole. We set the reference direction to
 # infintesimally less than 90 degrees to avoid any ambiguity. See
 # discussion at #4599.
 if attrname == "crval" and (value[1] == 90 or value[1] == math.pi/2):
 value = (value[0], value[1] * (1 - sys.float_info.epsilon))
 self.wcs.wcs.__setattr__(attrname, value)
 else:
 super(WCS, self).__setattr__(attrname, value)

 def __getattr__(self, attrname):
 if attrname in self.WCS_ATTRS:
 return getattr(self.wcs.wcs, attrname)
 else:
 super(WCS, self).__getattr__(attrname)

[docs] def p2s(self, pixpos):
 """
 Pixel to Spatial coordinate conversion.

 Args:
 pixpos (list): [x, y] pixel position

 Returns:
 ra (float): Right ascension corresponding to position [x, y]
 dec (float): Declination corresponding to position [x, y]
 """
 [ra], [dec] = self.wcs.wcs_pix2sky(pixpos[0], pixpos[1], self.ORIGIN)
 if math.isnan(ra) or math.isnan(dec):
 raise RuntimeError("Spatial position is not a number")
 return ra, dec

[docs] def s2p(self, spatialpos):
 """
 Spatial to Pixel coordinate conversion.

 Args:
 pixpos (list): [ra, dec] spatial position

 Returns:
 x (float): X pixel value corresponding to position [ra, dec]
 y (float): Y pixel value corresponding to position [ra, dec]
 """
 [x], [y] = self.wcs.wcs_sky2pix(spatialpos[0], spatialpos[1], self.ORIGIN)
 if math.isnan(x) or math.isnan(y):
 raise RuntimeError("Pixel position is not a number")
 return x, y

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/utility/containers.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.utility »

 Source code for tkp.utility.containers

"""
Container classes for the TKP pipeline.

These provide convenient means of marshalling the various types of data --
lightcurves, detections, sources, etc -- that the pipeline must handle.
"""

import logging
logger = logging.getLogger(__name__)

[docs]class ObjectContainer(list):
 """A container class for objects.

 What sort of objects? Well, anything that has a position and we
 want to keep lists of, really. So detections (ie, an individual
 source measurement on an image), sources (ie all the detections of
 a given object in a given image stack) and lightcurves (ie, all
 the sources associated with a given object through time).

 You probably don't want to use this on it's own: see ExtractionResults,
 TargetList or source for more useful derived classes.
 """
 def closest_to(self, pix_x, pix_y):
 distance, target = False, False
 logger.debug("Beginning a search for objects near %.1f, %.1f: ",
 pix_x, pix_y)
 logger.debug("%s contains %d objects", str(self), len(self))
 for obj in self:
 tmpdist = (pix_x - obj.x)**2 + (pix_y - obj.y)**2
 logger.debug("Object at %f, %f", obj.x, obj.y)
 logger.debug("Has distance %f", tmpdist)
 if not distance:
 distance = tmpdist
 target = obj
 else:
 if tmpdist < distance:
 target = obj
 distance = tmpdist
 logger.debug("Best distance is now %f", distance)
 logger.debug("From object %s", str(target))
 if not distance:
 return (target, distance)
 else:
 return (target, distance**0.5)

[docs] def __setslice__(self, section, items):
 """
 Not implemented.
 """
 raise NotImplementedError

[docs] def __iadd__(self, y):
 """
 Not implemented.
 """
 raise NotImplementedError

[docs] def __imul__(self, y):
 """
 Not implemented.
 """
 raise NotImplementedError

[docs] def __mul__(self, y):
 """
 Not implemented.
 """
 raise NotImplementedError

[docs] def __rmul__(self, y):
 """
 Not implemented.
 """
 raise NotImplementedError

 def __str__(self):
 return 'Container: ' + str(len(self)) + ' object(s).'

[docs]class ExtractionResults(ObjectContainer):
 """Container for the results of running source extraction on an
 ImageData object"""

 def __str__(self):
 return 'ExtractionResults: ' + str(len(self)) + ' detection(s).'

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/utility/sigmaclip.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.utility »

 Source code for tkp.utility.sigmaclip

"""
Generic kappa-sigma clipping routine.

Note: this does *not* replace the specialized sigma_clip function in
utilities.py
"""

from __future__ import division
import numpy

[docs]def clip(data, mean, sigma, siglow, sighigh, indices=None):
 """Perform kappa-sigma clipping of data around mean

 Args:

 data (numpy.ndarray): N-dimensional array of values

 mean (float): value around which to clip (does not have to be the mean)

 sigma (float): sigma-value for clipping

 siglow (float): lower kappa clipping values

 sighigh (float): higher kappa clipping values

 Kwargs:

 indices (numpy.ndarray): data selection by indices

 Returns:

 (numpy.ndarray) indices of non-clipped data

 """

 if indices is not None:
 ilow = numpy.logical_and(data >= mean - sigma * siglow, indices)
 ihigh = numpy.logical_and(data <= mean + sigma * sighigh, indices)
 else:
 ilow = data >= mean - sigma * siglow
 ihigh = data <= mean + sigma * sighigh
 indices = numpy.logical_and(ilow, ihigh)
 return indices

[docs]def calcmean(data, errors=None):
 """Calculate the mean and the standard deviation of the mean"""

 N = len(data)
 if errors is None:
 mean = data.sum() / N
 sigma = numpy.sqrt(((data**2).sum() - N * mean**2) / (N - 1) / N)
 else:
 w = 1. / errors**2
 mean = (w * data).sum() / w.sum()
 sigma = numpy.sqrt(1. / w.sum())
 return mean, sigma

[docs]def calcsigma(data, errors=None, mean=None, axis=None, errors_as_weight=False):
 """Calculate the sample standard deviation

 Args:

 data (numpy.ndarray): Data to be averaged. No conversion from
 eg a list to a numpy.array is done.

 Kwargs:

 errors (numpy.ndarray, None): Eerrors for the data. Errors
 needs to be the same shape as data (this is different than
 for numpy.average). If you want to use weights instead of
 errors as input, set errors_as_weight=True. If not given,
 all errors (and thus weights) are assumed to be equal to
 1.

 mean (float): Provide mean if you don't want the mean to be
 calculated for you. Pay careful attention to the shape if
 you provide 'axis'.

 axis (int): Specify axis along which the mean and sigma are
 calculated. If not provided, calculations are done over
 the whole array

 errors_as_weight (bool): Set to True if errors are weights.

 Returns:

 (2-tuple of floats) mean and sigma
 """

 N = data.shape[axis] if axis else len(data)
 if errors is None:
 w = None
 elif errors_as_weight:
 w = errors
 else:
 w = 1.0 / (errors * errors)
 if mean is None:
 # numpy.average does have a weight option, but may
 # not be available in all numpy versions
 mean = ((w * data).sum(axis) / (w.sum(axis))
 if w is not None else data.sum(axis) / N)
 if w is not None:
 V1 = w.sum(axis)
 V2 = (w * w).sum(axis)
 # weighted sample variance
 if axis:
 shape = list(mean.shape)
 shape.insert(axis, 1)
 mmean = numpy.array(mean, copy=0, ndmin=data.ndim).reshape(shape)
 else:
 mmean = mean
 sigma = numpy.sqrt(((data - mmean) * (data - mmean) * w).sum(axis) *
 (V1 / (V1 * V1 - V2)))
 else:
 # unweighted sample variance
 sigma = numpy.sqrt(((data * data).sum(axis) - N * mean * mean) /
 (N - 1))
 return mean, sigma

[docs]def sigmaclip(data, errors=None, niter=0, siglow=3., sighigh=3.,
 use_median=False):
 """Remove outliers from data which lie more than siglow/sighigh
 sample standard deviations from mean.

 Args:

 data (numpy.ndarray): Numpy array containing data values.

 Kwargs:

 errors (numpy.ndarray, None): Errors associated with the data
 values. If None, unweighted mean and standard deviation
 are used in calculations.

 niter (int): Number of iterations to calculate mean & standard
 deviation, and reject outliers, If niter is negative,
 iterations will continue until no more clipping occurs or
 until abs('niter') is reached, whichever is reached first.

 siglow (float): Kappa multiplier for standard deviation. Std *
 siglow defines the value below which data are rejected.

 sighigh (float): Kappa multiplier for standard deviation. Std *
 sighigh defines the value above which data are rejected.

 use_median (bool): Use median of data instead of mean.

 Returns:

 tuple: (2-tuple) Boolean numpy array of indices indicating which
 elements are clipped (False), with the same shape as the
 input; number of iterations

 """

 # indices keeps track which data should be discarded
 indices = numpy.ones(len(data.ravel()), dtype=numpy.bool).reshape(
 data.shape)
 nniter = -niter if niter < 0 else niter
 i = 0
 for i in range(nniter):
 newdata = data[indices]
 newerrors = errors[indices] if errors is not None else None
 N = len(newdata)
 if N < 2:
 return indices, i
 if use_median:
 mean = numpy.median(newdata)
 else:
 mean = None
 mean, sigma = calcsigma(newdata, newerrors, mean)
 newindices = clip(data, mean, sigma, siglow, sighigh)
 if niter < 0:
 # break when no changes
 if (newindices == indices).all():
 break
 indices = newindices
 return indices, i + 1

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/consistency.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.consistency

"""
check database for consistency
"""
import logging
import tkp.db

logger = logging.getLogger(__name__)

The three queries below were know to give a count > 0
when the db got into an inconsistent state.
Therefore, before every run we do a check on these numbers
query_id0 = """\
SELECT COUNT(*)
 FROM extractedsource
 WHERE id = 0
"""

query_image0 = """\
SELECT COUNT(*)
 FROM extractedsource
 WHERE image = 0
"""

query_zone0 = """\
SELECT COUNT(*)
 FROM extractedsource
 WHERE id = 0
 AND image = 0
 AND zone = 0
"""

[docs]def check():
 """
 Checks for any inconsistent values in tables.

 Returns False if any inconsistency is found, otherwise True.
 """
 for query in (query_id0, query_image0, query_zone0):
 if not isconsistent(query):
 return False
 return True

[docs]def isconsistent(query):
 """
 Counting rows should return 0, otherwise database is in an
 inconsistent state.

 If the database is consistent we return True, otherwise False.
 """
 try:
 cursor = tkp.db.execute(query, commit=True)
 result = cursor.fetchone()[0]
 if result == 0:
 return True
 else:
 logger.warning("Inconsistent database:\n %s returns %s" % (query, result))
 except Exception, e:
 logger.exception("No consistency check possible for database")
 return False

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/associations.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.associations

"""
A collection of back end subroutines (mostly SQL queries), In this module we
deal with source association.
"""
import logging
import tkp.db

logger = logging.getLogger(__name__)

[docs]def associate_extracted_sources(image_id, deRuiter_r, beamwidths_limit=1,
 new_source_sigma_margin=3):
 """
 Associate extracted sources with sources detected in the running
 catalog.

 See the "developer's reference" section of the docs for a step-by-step
 breakdown of the logic encapsulated here.

 The dimensionless distance between two sources is given by the
 "De Ruiter radius", see Chapters 2 & 3 of Scheers' thesis.
 """

 logger.debug("Using a De Ruiter radius of %s" % (deRuiter_r,))
 ##This is used as a check that everything from the sourcefinder is sensible.
 ##Currently switched off as it's incompatible with sources about the meridian.
_delete_bad_blind_extractions(conn, image_id)
 _empty_temprunningcatalog()
 #+--+
 #| Here we select all extracted sources that have one or|
 #| more counterparts in the runningcatalog |
 #| Association pairs are of the sequence runcat-xtrsrc, |
 #| which may be matching one of the following cases: |
 #| many-to-many, many-to-one, one-to-many, one-to-many |
 #+--+
 mw = _check_meridian_wrap(image_id)
 _insert_temprunningcatalog(image_id, deRuiter_r, beamwidths_limit, mw)
 #+--+
 #| Here we process (flag) the many-to-many associations.|
 #+--+
 database = tkp.db.Database()

 # Since the _flag_many_to_many_tempruncat uses the temprunningcatalog table
 # as a temporary use space the table will receive many writes and updates.
 # On postgresql for speed up reasons rows are not directly deleted, but
 # marked for deletion and eventually deleted by an auto vacuum process.
 # Because of the nested complexity of this query it may happen the
 # computational complexity of the query explodes, resulting in massive
 # slowdowns. To make sure the temprunningcatalog table doesn't contain dead
 # rows we force a manual vacuum here.
 database.vacuum('temprunningcatalog')

 # _process_many_to_many()
 _flag_many_to_many_tempruncat()
 #+--+
 #| After this, the assocs have been reduced to many-to-1|
 #| which are treated identical as 1-to-1, and 1-to-many.|
 #+--+
 # _process_many_to_1() => process_1_to_1()
 #+--+
 #| Here we process the one-to-many associations. |
 #+--+
 try:
 _insert_1_to_many_runcat()
 except tkp.db.Database().exceptions.RhombusError as e:
 logger.error("Error caught around _insert_1_to_many_runcat - "
 "possible 'RhombusError'. See Issue #4778. Will now re-raise.")
 raise e

 _flag_1_to_many_inactive_runcat()

 _insert_1_to_many_runcat_flux()
 _delete_1_to_many_inactive_runcat_flux()

 _insert_1_to_many_basepoint_assocxtrsource()
 _insert_1_to_many_replacement_assocxtrsource()
 _delete_1_to_many_inactive_assocxtrsource()

 _insert_1_to_many_assocskyrgn()
 _delete_1_to_many_inactive_assocskyrgn()

 _insert_1_to_many_newsource()
 _delete_1_to_many_inactive_newsource()

 _flag_1_to_many_inactive_tempruncat()

 #+---+
 #| Here we process the one-to-one associations |
 #+---+
 # _process_1_to_1()
 _insert_1_to_1_assoc()
 _update_1_to_1_runcat()
 n_updated_rf = _update_1_to_1_runcat_flux() # update flux in existing band
 if n_updated_rf:
 logger.debug("Updated 1-to-1 fluxes for %s sources" % n_updated_rf)
 n_new_rf = _insert_1_to_1_runcat_flux() # insert flux for new band
 if n_new_rf:
 logger.debug("Inserted new fluxes for %s sources" % n_new_rf)
 #+---+
 #| Here we take care of the extracted sources that could |
 #| not be associated with any runningcatalog source |
 #+---+
 _insert_new_runcat(image_id)
 _insert_new_runcat_flux(image_id)
 _insert_new_runcat_skyrgn_assocs(image_id)
 _insert_new_assocxtrsource(image_id)
 _determine_newsource_previous_limits(image_id, new_source_sigma_margin)

 _empty_temprunningcatalog()
 _update_ff_runcat_extractedsource()
 _delete_inactive_runcat()

##
Subroutines...
Here be SQL dragons.
##

[docs]def _delete_bad_blind_extractions(image_id):
 """Remove blind extractions centred outside designated extract region.

 These occur sometimes due to highly elliptical fits on noisy data,
 creating a best fit centred outside the original pixel region.
 The source-extraction code has been modified to (probably) prevent this,
 but we check for them anyway.

 NB. We currently only delete blind extractions.
 We expect that occasionally forced fits to sources just inside the extraction
 radius might converge just outside, but these should be restricted to a
 very small additional margin. By not deleting these edge cases,
 the data allows us to construct proper lightcurves, and (I think) does
 not contribute to their weighted mean positions (so sources cannot 'migrate'
 across the border).
 TODO(TS): Check this.

 Only extractions from the specified image are checked for deletion.

 Returns:
 Number of extractedsource rows deleted.
 """
 query = """\
DELETE
FROM extractedsource
WHERE image = %(imgid)s
 AND id IN (SELECT badid
 FROM (SELECT ex0.id as badid
 ,SQRT(
 ((ex0.ra - sky.centre_ra)* COS(RADIANS(sky.centre_decl))
 (ex0.ra - sky.centre_ra) COS(RADIANS(sky.centre_decl))
 + (ex0.decl - sky.centre_decl) * (ex0.decl - sky.centre_decl))
) as distance
 ,sky.xtr_radius as xtr_radius
 FROM extractedsource ex0
 ,image im
 ,skyregion sky
 WHERE im.id = %(imgid)s
 AND ex0.image = im.id
 AND ex0.extract_type = 0
 AND im.skyrgn = sky.id
) t1
 WHERE t1.distance > t1.xtr_radius
)
"""

 qry_params = {'imgid':image_id}
 cursor = tkp.db.execute(query, qry_params, commit=True)
 n_deleted = cursor.rowcount
 if n_deleted:
 logger.warn("Removed %s bad blind extractions for image %s"
 "(centred outside extraction region)",
 n_deleted, image_id)
 return n_deleted

[docs]def _empty_temprunningcatalog():
 """Initialize the temporary storage table

 Initialize the temporary table temprunningcatalog which contains
 the current observed sources.
 """
 query = "DELETE FROM temprunningcatalog"
 tkp.db.execute(query, commit=True)

[docs]def _check_meridian_wrap(image_id):
 """
 Checks whether an image is close to the meridian ra = 0 or ra = 360

 When so, the association query needs to be rewritten to take into account
 sources across the 0/360 meridian.

 The query returns:

 q_across: true, if the extraction region of the image crosses
 the ra=0/360 border

 ra_min: the min value of the ra-between for the normal case,
 when the image is outside the ra=0/360 meridian,
 otherwise NULL

 ra_max: the max value of the ra-between for the normal case,
 when the image is outside the ra=0/360 meridian,
 otherwise NULL

 ra_min1/max1 and ra_min2/max2 are the values which may be used
 for the case of a cross-meridian image.
 F.ex. using a search radius of 5 degrees, and when a source is at
 359.99 the ra-betweens 1 and 2 are :
 ... AND (ra BETWEEN ra_min1 AND ra_max1 OR ra BETWEEN ra_min2 AND ra_max2) ...
 ... AND (ra BETWEEN 354.99 AND 360 OR ra BETWEEN 0 AND 4.99) ...

 ra_min1: the min value of the high-end ra-between, if the
 extraction region of the image crosses the ra=0/360 border,
 otherwise NULL

 ra_max1: the min value of the high-end ra-between, if the
 extraction region of the image crosses the ra=0/360 border,
 otherwise NULL

 ra_min2, ra_max2: As ra_min1/max1, but for the low-end ra values.

 These values are not being used in the cross-meridian association query,
 but are merely reported to notice the search area.
 The cross-meridian association query uses the cartesian dot product,
 to get the search area.
 """

 meridian_wrap_query = """\
SELECT CASE WHEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) < 0 OR
 s.centre_ra + alpha(s.xtr_radius, s.centre_decl) > 360
 THEN TRUE
 ELSE FALSE
 END AS q_across
 ,CASE WHEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) > 0 AND
 s.centre_ra + alpha(s.xtr_radius, s.centre_decl) < 360
 THEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl)
 ELSE NULL
 END AS ra_min
 ,CASE WHEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) > 0 AND
 s.centre_ra + alpha(s.xtr_radius, s.centre_decl) < 360
 THEN s.centre_ra + alpha(s.xtr_radius, s.centre_decl)
 ELSE NULL
 END AS ra_max
 ,CASE WHEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) < 0
 THEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) + 360.0
 ELSE CASE WHEN s.centre_ra + alpha(s.xtr_radius, s.centre_decl) > 360
 THEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl)
 ELSE NULL
 END
 END AS ra_min1
 ,CASE WHEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) < 0 OR
 s.centre_ra + alpha(s.xtr_radius, s.centre_decl) > 360
 THEN 360
 ELSE NULL
 END AS ra_max1
 ,CASE WHEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) < 0 OR
 s.centre_ra + alpha(s.xtr_radius, s.centre_decl) > 360
 THEN 0
 ELSE NULL
 END AS ra_min2
 ,CASE WHEN s.centre_ra - alpha(s.xtr_radius, s.centre_decl) < 0
 THEN s.centre_ra + alpha(s.xtr_radius, s.centre_decl)
 ELSE CASE WHEN s.centre_ra + alpha(s.xtr_radius, s.centre_decl) > 360
 THEN s.centre_ra + alpha(s.xtr_radius, s.centre_decl) - 360
 ELSE NULL
 END
 END AS ra_max2
 FROM image i
 ,skyregion s
 WHERE i.skyrgn = s.id
 AND i.id = %(image_id)s
"""
 args = {'image_id': image_id}
 cursor = tkp.db.execute(meridian_wrap_query, args, commit=True)
 results = zip(*cursor.fetchall())

 if len(results) != 0:
 q_across = results[0]
 ra_min = results[1]
 ra_max = results[2]
 ra_min1 = results[3]
 ra_max1 = results[4]
 ra_min2 = results[5]
 ra_max2 = results[6]
 if len(q_across) != 1:
 raise ValueError("More than one FoVs for image '%s'" % image_id)
 else:
 raise ValueError("No FoV information present for image '%s'" % image_id)

 return {
 'q_across': q_across[0],
 'ra_min': ra_min[0],
 'ra_max': ra_max[0],
 'ra_min1': ra_min1[0],
 'ra_max1': ra_max1[0],
 'ra_min2': ra_min2[0],
 'ra_max2': ra_max2[0]
 }

[docs]def _insert_temprunningcatalog(image_id, deRuiter_r, beamwidths_limit,
 meridian_wrap):
 """Select matched sources

 Here we select the extractedsource that have a positional match
 with the sources in the running catalogue table (runningcatalog).
 Those sources which *do* have a potential match, will be inserted into the
 temporary running catalogue table (temprunningcatalog).

 See also:
 http://docs.transientskp.org/tkp/database/schema.html#temprunningcatalog

 Explanation of some column name prefixes/suffixes used in the SQL query:

 - avg_X := average of X
 - avg_X_sq := average of X^2
 - avg_weight_X := average of weight of X, i.e. mean(1/error^2)
 - avg_weighted_X := average of weighted X,
 i.e. mean(X/error^2)
 - avg_weighted_X_sq := average of weighted X^2,
 i.e. mean(X^2/error^2)

 This result set might contain multiple associations (1-n,n-1)
 for a single known source in runningcatalog.

 The n-1 assocs will be treated similar as n 1-1 assocs.

 NOTE: Beware of the extra condition on x0.image in the WHERE clause,
 preventing the query to grow exponentially in response time
 """

 # The cross-meridian differs slightly from the normal association query.
 #
 # We removed the wm_ra between statement, because the dot-product of the
 # cartesian coordinates will handle the distance checking in case of
 # meridian wrapping.
 #
 # The RA values for sources with 270 < wm_ra < 90 are translated to the
 # opposite site of the sphere, where we can easily work with the modulo
 # values to calculate the ra position (but this is of course translated
 # back) and de Ruiter radius.
 #
 # Note that a weighted mean RA in the range [-8e-14, 0) is snapped to
 # zero. This accounts for dynamic range issues with doubles: if we end up
 # with a tiny sub-zero RA and add 360 to it, we end up with 360 rather
 # than 359.999..., but, of course, we don't regard an RA of 360 as
 # meaningful.
 q_across_ra0 = """\
INSERT INTO temprunningcatalog
 (runcat
 ,xtrsrc
 ,distance_arcsec
 ,r
 ,dataset
 ,band
 ,stokes
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_ra_err
 ,avg_decl_err
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT t0.runcat
 ,t0.xtrsrc
 ,t0.distance_arcsec
 ,t0.r
 ,t0.dataset
 ,t0.band
 ,t0.stokes
 ,t0.datapoints
 ,CAST(FLOOR(t0.wm_decl) AS INTEGER) AS zone
 ,CASE WHEN t0.wm_ra < 0
 THEN CASE WHEN ABS(t0.wm_ra) > 8e-14
 THEN t0.wm_ra + 360
 ELSE 0.0
 END
 ELSE t0.wm_ra
 END AS wm_ra
 ,t0.wm_decl
 ,t0.wm_uncertainty_ew
 ,t0.wm_uncertainty_ns
 ,t0.avg_ra_err
 ,t0.avg_decl_err
 ,t0.avg_wra
 ,t0.avg_wdecl
 ,t0.avg_weight_ra
 ,t0.avg_weight_decl
 ,COS(RADIANS(t0.wm_decl)) * COS(RADIANS(t0.wm_ra)) AS x
 ,COS(RADIANS(t0.wm_decl)) * SIN(RADIANS(t0.wm_ra)) AS y
 ,SIN(RADIANS(t0.wm_decl)) AS z
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN 1
 ELSE rf0.f_datapoints + 1
 END AS f_datapoints
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak
 ELSE (rf0.f_datapoints * rf0.avg_f_peak
 + t0.f_peak)
 / (rf0.f_datapoints + 1)
 END AS avg_f_peak
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak
 ELSE (rf0.f_datapoints * rf0.avg_f_peak_sq
 + t0.f_peak * t0.f_peak)
 / (rf0.f_datapoints + 1)
 END AS avg_f_peak_sq
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN 1 / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf0.f_datapoints * rf0.avg_f_peak_weight
 + 1 / (t0.f_peak_err * t0.f_peak_err))
 / (rf0.f_datapoints + 1)
 END AS avg_f_peak_weight
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_peak
 + t0.f_peak / (t0.f_peak_err * t0.f_peak_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_peak
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_peak_sq
 + (t0.f_peak * t0.f_peak) / (t0.f_peak_err * t0.f_peak_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_peak_sq
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int
 ELSE (rf0.f_datapoints * rf0.avg_f_int
 + t0.f_int)
 / (rf0.f_datapoints + 1)
 END AS avg_f_int
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int
 ELSE (rf0.f_datapoints * rf0.avg_f_int_sq
 + t0.f_int * t0.f_int)
 / (rf0.f_datapoints + 1)
 END AS avg_f_int_sq
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN 1 / (t0.f_int_err * t0.f_int_err)
 ELSE (rf0.f_datapoints * rf0.avg_f_int_weight
 + 1 / (t0.f_int_err * t0.f_int_err))
 / (rf0.f_datapoints + 1)
 END AS avg_f_int_weight
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_int
 + t0.f_int / (t0.f_int_err * t0.f_int_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_int
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_int_sq
 + (t0.f_int * t0.f_int) / (t0.f_int_err * t0.f_int_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_int_sq
 FROM (SELECT rc0.id as runcat
 ,x0.id as xtrsrc
 ,3600 * DEGREES(2 * ASIN(SQRT((rc0.x - x0.x) * (rc0.x - x0.x)
 + (rc0.y - x0.y) * (rc0.y - x0.y)
 + (rc0.z - x0.z) * (rc0.z - x0.z)
) / 2)
) AS distance_arcsec
 ,CASE WHEN rc0.wm_ra < 90 OR rc0.wm_ra > 270
 THEN
 SQRT((MOD(CAST(rc0.wm_ra + 180 AS NUMERIC(11,8)), 360) - MOD(CAST(x0.ra + 180 AS NUMERIC(11,8)), 360)) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 * (MOD(CAST(rc0.wm_ra + 180 AS NUMERIC(11,8)), 360) - MOD(CAST(x0.ra + 180 AS NUMERIC(11,8)), 360)) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 / (rc0.wm_uncertainty_ew * rc0.wm_uncertainty_ew + x0.uncertainty_ew * x0.uncertainty_ew)
 + (rc0.wm_decl - x0.decl) * (rc0.wm_decl - x0.decl)
 / (rc0.wm_uncertainty_ns * rc0.wm_uncertainty_ns + x0.uncertainty_ns * x0.uncertainty_ns)
)
 ELSE
 SQRT((rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 * (rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 / (rc0.wm_uncertainty_ew * rc0.wm_uncertainty_ew + x0.uncertainty_ew * x0.uncertainty_ew)
 + (rc0.wm_decl - x0.decl) * (rc0.wm_decl - x0.decl)
 / (rc0.wm_uncertainty_ns * rc0.wm_uncertainty_ns + x0.uncertainty_ns * x0.uncertainty_ns)
)
 END AS r
 ,x0.f_peak
 ,x0.f_peak_err
 ,x0.f_int
 ,x0.f_int_err
 ,i0.dataset
 ,i0.band
 ,i0.stokes
 ,rc0.datapoints + 1 AS datapoints
 ,CASE WHEN rc0.wm_ra < 90 OR rc0.wm_ra > 270
 THEN (datapoints * rc0.avg_weight_ra * MOD(CAST(rc0.wm_ra + 180 AS NUMERIC(11,8)), 360) + MOD(CAST(x0.ra + 180 AS NUMERIC(11,8)), 360) / (x0.uncertainty_ew * x0.uncertainty_ew))
 /
 (datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew)) - 180
 ELSE
 (datapoints * rc0.avg_wra + x0.ra /(x0.uncertainty_ew * x0.uncertainty_ew))
 /
 (datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew))
 END AS wm_ra
 ,(datapoints * rc0.avg_weight_decl * rc0.wm_decl + x0.decl / (x0.uncertainty_ns * x0.uncertainty_ns))
 /
 (datapoints * rc0.avg_weight_decl + 1 / (x0.uncertainty_ns * x0.uncertainty_ns))
 AS wm_decl
 ,SQRT(1 / ((datapoints + 1) *
 ((datapoints * rc0.avg_weight_ra +
 1 / (x0.uncertainty_ew * x0.uncertainty_ew)) / (datapoints + 1))
)
) AS wm_uncertainty_ew
 ,SQRT(1 / ((datapoints + 1) *
 ((datapoints * rc0.avg_weight_decl +
 1 / (x0.uncertainty_ns * x0.uncertainty_ns)) / (datapoints + 1))
)
) AS wm_uncertainty_ns
 ,(datapoints * rc0.avg_ra_err + x0.ra_err) / (datapoints + 1) AS avg_ra_err
 ,(datapoints * rc0.avg_decl_err + x0.decl_err) / (datapoints + 1) AS avg_decl_err
 ,CASE WHEN rc0.wm_ra < 90 OR rc0.wm_ra > 270
 THEN ((datapoints * rc0.avg_weight_ra * MOD(CAST(rc0.wm_ra + 180 AS NUMERIC(11,8)), 360) + MOD(CAST(x0.ra + 180 AS NUMERIC(11,8)), 360) / (x0.uncertainty_ew * x0.uncertainty_ew)
 - datapoints * avg_weight_ra * 180 - 180 / (x0.uncertainty_ew * x0.uncertainty_ew))
 / (datapoints + 1))
 - 360 * (datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew)) / (datapoints + 1)
 * FLOOR(
 ((datapoints * avg_weight_ra * MOD(CAST(rc0.wm_ra + 180 AS NUMERIC(11,8)), 360) + MOD(CAST(x0.ra + 180 AS NUMERIC(11,8)), 360) / (x0.uncertainty_ew * x0.uncertainty_ew)
 - datapoints * avg_weight_ra * 180 - 180 / (x0.uncertainty_ew * x0.uncertainty_ew))
 / (datapoints + 1))
 / (360 * (datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew)) / (datapoints + 1))
)
 ELSE
 (datapoints * rc0.avg_wra + x0.ra / (x0.uncertainty_ew * x0.uncertainty_ew))
 / (datapoints + 1)
 END AS avg_wra
 ,(datapoints * rc0.avg_wdecl + x0.decl / (x0.uncertainty_ns * x0.uncertainty_ns))
 / (datapoints + 1) AS avg_wdecl
 ,(datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew))
 / (datapoints + 1) AS avg_weight_ra
 ,(datapoints * rc0.avg_weight_decl + 1 / (x0.uncertainty_ns * x0.uncertainty_ns))
 / (datapoints + 1) AS avg_weight_decl
 FROM extractedsource x0
 ,runningcatalog rc0
 ,image i0
 WHERE i0.id = %(image_id)s
 AND x0.image = i0.id
 AND x0.image = %(image_id)s
 AND i0.dataset = rc0.dataset
 AND rc0.mon_src = FALSE
 AND rc0.zone BETWEEN CAST(FLOOR(x0.decl - %(beamwidths_limit)s * i0.rb_smaj) as INTEGER)
 AND CAST(FLOOR(x0.decl + %(beamwidths_limit)s * i0.rb_smaj) as INTEGER)
 AND rc0.wm_decl BETWEEN x0.decl - %(beamwidths_limit)s * i0.rb_smaj
 AND x0.decl + %(beamwidths_limit)s * i0.rb_smaj
 AND rc0.x*x0.x + rc0.y*x0.y + rc0.z*x0.z > cos(radians(%(beamwidths_limit)s * i0.rb_smaj))
 AND CASE WHEN rc0.wm_ra < 90 OR rc0.wm_ra > 270
 THEN SQRT((MOD(CAST(rc0.wm_ra + 180 AS NUMERIC(11,8)), 360) - MOD(CAST(x0.ra + 180 AS NUMERIC(11,8)), 360)) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 * (MOD(CAST(rc0.wm_ra + 180 AS NUMERIC(11,8)), 360) - MOD(CAST(x0.ra + 180 AS NUMERIC(11,8)), 360)) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 / (x0.uncertainty_ew * x0.uncertainty_ew + rc0.wm_uncertainty_ew * rc0.wm_uncertainty_ew)
 + (x0.decl - rc0.wm_decl) * (x0.decl - rc0.wm_decl)
 / (x0.uncertainty_ns * x0.uncertainty_ns + rc0.wm_uncertainty_ns * rc0.wm_uncertainty_ns)
)
 ELSE SQRT((rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 * (rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 / (x0.uncertainty_ew * x0.uncertainty_ew + rc0.wm_uncertainty_ew * rc0.wm_uncertainty_ew)
 + (x0.decl - rc0.wm_decl) * (x0.decl - rc0.wm_decl)
 / (x0.uncertainty_ns * x0.uncertainty_ns + rc0.wm_uncertainty_ns * rc0.wm_uncertainty_ns)
)
 END < %(deRuiter)s
) t0
 LEFT OUTER JOIN runningcatalog_flux rf0
 ON t0.runcat = rf0.runcat
 AND t0.band = rf0.band
 AND t0.stokes = rf0.stokes
"""
 query = """\
INSERT INTO temprunningcatalog
 (runcat
 ,xtrsrc
 ,distance_arcsec
 ,r
 ,dataset
 ,band
 ,stokes
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_ra_err
 ,avg_decl_err
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT t0.runcat
 ,t0.xtrsrc
 ,t0.distance_arcsec
 ,t0.r
 ,t0.dataset
 ,t0.band
 ,t0.stokes
 ,t0.datapoints
 ,CAST(FLOOR(t0.wm_decl) AS INTEGER) AS zone
 ,t0.wm_ra
 ,t0.wm_decl
 ,t0.wm_uncertainty_ew
 ,t0.wm_uncertainty_ns
 ,t0.avg_ra_err
 ,t0.avg_decl_err
 ,t0.avg_wra
 ,t0.avg_wdecl
 ,t0.avg_weight_ra
 ,t0.avg_weight_decl
 ,COS(RADIANS(t0.wm_decl)) * COS(RADIANS(t0.wm_ra)) AS x
 ,COS(RADIANS(t0.wm_decl)) * SIN(RADIANS(t0.wm_ra)) AS y
 ,SIN(RADIANS(t0.wm_decl)) AS z
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN 1
 ELSE rf0.f_datapoints + 1
 END AS f_datapoints
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak
 ELSE (rf0.f_datapoints * rf0.avg_f_peak
 + t0.f_peak)
 / (rf0.f_datapoints + 1)
 END AS avg_f_peak
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak
 ELSE (rf0.f_datapoints * rf0.avg_f_peak_sq
 + t0.f_peak * t0.f_peak)
 / (rf0.f_datapoints + 1)
 END AS avg_f_peak_sq
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN 1 / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf0.f_datapoints * rf0.avg_f_peak_weight
 + 1 / (t0.f_peak_err * t0.f_peak_err))
 / (rf0.f_datapoints + 1)
 END AS avg_f_peak_weight
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_peak
 + t0.f_peak / (t0.f_peak_err * t0.f_peak_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_peak
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_peak_sq
 + (t0.f_peak * t0.f_peak) / (t0.f_peak_err * t0.f_peak_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_peak_sq
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int
 ELSE (rf0.f_datapoints * rf0.avg_f_int
 + t0.f_int)
 / (rf0.f_datapoints + 1)
 END AS avg_f_int
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int
 ELSE (rf0.f_datapoints * rf0.avg_f_int_sq
 + t0.f_int * t0.f_int)
 / (rf0.f_datapoints + 1)
 END AS avg_f_int_sq
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN 1 / (t0.f_int_err * t0.f_int_err)
 ELSE (rf0.f_datapoints * rf0.avg_f_int_weight
 + 1 / (t0.f_int_err * t0.f_int_err))
 / (rf0.f_datapoints + 1)
 END AS avg_f_int_weight
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_int
 + t0.f_int / (t0.f_int_err * t0.f_int_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_int
 ,CASE WHEN rf0.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf0.f_datapoints * rf0.avg_weighted_f_int_sq
 + (t0.f_int * t0.f_int) / (t0.f_int_err * t0.f_int_err))
 / (rf0.f_datapoints + 1)
 END AS avg_weighted_f_int_sq
 FROM (SELECT rc0.id as runcat
 ,x0.id as xtrsrc
 ,3600 * DEGREES(2 * ASIN(SQRT((rc0.x - x0.x) * (rc0.x - x0.x)
 + (rc0.y - x0.y) * (rc0.y - x0.y)
 + (rc0.z - x0.z) * (rc0.z - x0.z)
) / 2)
) AS distance_arcsec
 ,SQRT((rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 * (rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 / (rc0.wm_uncertainty_ew * rc0.wm_uncertainty_ew + x0.uncertainty_ew * x0.uncertainty_ew)
 + (rc0.wm_decl - x0.decl) * (rc0.wm_decl - x0.decl)
 / (rc0.wm_uncertainty_ns * rc0.wm_uncertainty_ns + x0.uncertainty_ns * x0.uncertainty_ns)
) AS r
 ,x0.f_peak
 ,x0.f_peak_err
 ,x0.f_int
 ,x0.f_int_err
 ,i0.dataset
 ,i0.band
 ,i0.stokes
 ,rc0.datapoints + 1 AS datapoints
 ,(datapoints * rc0.avg_wra + x0.ra /(x0.uncertainty_ew * x0.uncertainty_ew))
 /
 (datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew))
 AS wm_ra
 ,(datapoints * rc0.avg_wdecl + x0.decl /(x0.uncertainty_ns * x0.uncertainty_ns))
 /
 (datapoints * rc0.avg_weight_decl + 1 /(x0.uncertainty_ns * x0.uncertainty_ns))
 AS wm_decl
 , SQRT(1 / ((datapoints + 1)
 * ((datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew))
 / (datapoints + 1)
)
)
) AS wm_uncertainty_ew
 , SQRT(1 / ((datapoints + 1)
 * ((datapoints * rc0.avg_weight_decl + 1 / (x0.uncertainty_ns * x0.uncertainty_ns))
 / (datapoints + 1)
)
)
) AS wm_uncertainty_ns
 ,(datapoints * rc0.avg_ra_err + x0.ra_err) / (datapoints + 1) AS avg_ra_err
 ,(datapoints * rc0.avg_decl_err + x0.decl_err) / (datapoints + 1) AS avg_decl_err
 ,(datapoints * rc0.avg_wra + x0.ra / (x0.uncertainty_ew * x0.uncertainty_ew))
 / (datapoints + 1) AS avg_wra
 ,(datapoints * rc0.avg_wdecl + x0.decl / (x0.uncertainty_ns * x0.uncertainty_ns))
 / (datapoints + 1) AS avg_wdecl
 ,(datapoints * rc0.avg_weight_ra + 1 / (x0.uncertainty_ew * x0.uncertainty_ew))
 / (datapoints + 1) AS avg_weight_ra
 ,(datapoints * rc0.avg_weight_decl + 1 / (x0.uncertainty_ns * x0.uncertainty_ns))
 / (datapoints + 1) AS avg_weight_decl
 FROM extractedsource x0
 ,runningcatalog rc0
 ,image i0
 WHERE i0.id = %(image_id)s
 AND x0.image = i0.id
 AND x0.image = %(image_id)s
 AND i0.dataset = rc0.dataset
 AND rc0.mon_src = FALSE
 AND rc0.zone BETWEEN CAST(FLOOR(x0.decl - %(beamwidths_limit)s * i0.rb_smaj) AS INTEGER)
 AND CAST(FLOOR(x0.decl + %(beamwidths_limit)s * i0.rb_smaj) AS INTEGER)
 AND rc0.wm_decl BETWEEN x0.decl - %(beamwidths_limit)s * i0.rb_smaj
 AND x0.decl + %(beamwidths_limit)s * i0.rb_smaj
 AND rc0.wm_ra BETWEEN x0.ra - alpha(%(beamwidths_limit)s * i0.rb_smaj, x0.decl)
 AND x0.ra + alpha(%(beamwidths_limit)s * i0.rb_smaj, x0.decl)
 AND rc0.x * x0.x + rc0.y * x0.y + rc0.z * x0.z > COS(RADIANS(%(beamwidths_limit)s * i0.rb_smaj))
 AND SQRT((rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 * (rc0.wm_ra - x0.ra) * COS(RADIANS((rc0.wm_decl + x0.decl)/2))
 / (x0.uncertainty_ew * x0.uncertainty_ew + rc0.wm_uncertainty_ew * rc0.wm_uncertainty_ew)
 + (x0.decl - rc0.wm_decl) * (x0.decl - rc0.wm_decl)
 / (x0.uncertainty_ns * x0.uncertainty_ns + rc0.wm_uncertainty_ns * rc0.wm_uncertainty_ns)
) < %(deRuiter)s
) t0
 LEFT OUTER JOIN runningcatalog_flux rf0
 ON t0.runcat = rf0.runcat
 AND t0.band = rf0.band
 AND t0.stokes = rf0.stokes
"""
 #mw = _check_meridian_wrap(conn, image_id)
 if meridian_wrap['q_across'] == True:
 logger.debug("Search across 0/360 meridian: %s" % meridian_wrap)
 query = q_across_ra0

 args = {'image_id': image_id, 'deRuiter': deRuiter_r,
 'beamwidths_limit' : beamwidths_limit}
 tkp.db.execute(query, args, commit=True)

[docs]def _flag_many_to_many_tempruncat():
 """Select the many-to-many association pairs in temprunningcatalog.

 By flagging the many-to-many associations, we reduce the
 processing to one-to-many and many-to-one (identical to one-to-one)
 relationships

 """

 # This one selects the farthest out of the many-to-many assocs
 query = """\
UPDATE temprunningcatalog
 SET inactive = TRUE
 WHERE EXISTS (SELECT runcat
 ,xtrsrc
 FROM (SELECT t1.runcat
 ,t1.xtrsrc
 FROM (SELECT xtrsrc
 ,MIN(r) as min_r
 FROM temprunningcatalog
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE xtrsrc IN (SELECT xtrsrc
 FROM temprunningcatalog
 GROUP BY xtrsrc
 HAVING COUNT(*) > 1
)
)
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
 AND xtrsrc IN (SELECT xtrsrc
 FROM temprunningcatalog
 GROUP BY xtrsrc
 HAVING COUNT(*) > 1
)
 GROUP BY xtrsrc
) t0
 ,(SELECT runcat
 ,xtrsrc
 ,r
 FROM temprunningcatalog
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE xtrsrc IN (SELECT xtrsrc
 FROM temprunningcatalog
 GROUP BY xtrsrc
 HAVING COUNT(*) > 1
)
)
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
 AND xtrsrc IN (SELECT xtrsrc
 FROM temprunningcatalog
 GROUP BY xtrsrc
 HAVING COUNT(*) > 1
)
) t1
 WHERE t0.xtrsrc = t1.xtrsrc
 AND t0.min_r < t1.r
) t2
 WHERE t2.runcat = temprunningcatalog.runcat
 AND t2.xtrsrc = temprunningcatalog.xtrsrc
)
"""

 tkp.db.execute(query, commit=True)

[docs]def _insert_1_to_many_runcat():
 """Insert the extracted sources that belong to one-to-many
 associations in the runningcatalog.

 Since for the one-to-many associations (i.e. one runcat source
 associated with multiple extracted sources) we cannot a priori
 decide which counterpart pair is the correct one, or whether all
 are correct (in the case of a higher-resolution image),
 all extracted sources are added as a new source to
 the runningcatalog, and they will replace the (old; lower resolution)
 runcat source of the association.

 As a consequence of this, the resolution of the runningcatalog
 is increasing over time.

 """
 query = """\
INSERT INTO runningcatalog
 (xtrsrc
 ,dataset
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_ra_err
 ,avg_decl_err
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
)
 SELECT xtrsrc
 ,dataset
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_ra_err
 ,avg_decl_err
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
 FROM (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
) one_to_many
 ,temprunningcatalog tmprc
 WHERE tmprc.runcat = one_to_many.runcat
 AND tmprc.inactive = FALSE
"""
 tkp.db.execute(query, commit=True)

[docs]def _insert_1_to_many_runcat_flux():
 """Insert the fluxes of the extracted sources that belong
 to a one-to-many association in the runningcatalog.

 Analogous to the runningcatalog, extracted source properties
 are added to the runningcatalog_flux table.
 """

 # NB we pull the new runcat id from the runningcatalog by matching with
 # temprunningcatalog via xtrsrc. (temprunningcatalog.runcat points at old
 # runcat entries).

 query = """\
INSERT INTO runningcatalog_flux
 (runcat
 ,band
 ,stokes
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT r.id
 ,tmprc.band
 ,tmprc.stokes
 ,tmprc.f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
 FROM (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
) one_to_many
 ,temprunningcatalog tmprc
 ,runningcatalog r
 WHERE tmprc.runcat = one_to_many.runcat
 AND tmprc.inactive = FALSE
 AND r.xtrsrc = tmprc.xtrsrc
"""
 tkp.db.execute(query, commit=True)

[docs]def _insert_1_to_many_basepoint_assocxtrsource():
 """Insert 'base points' for one-to-many associations

 Before continuing, we have to insert the 'base points' of the associations,
 i.e. the links between the new runningcatalog entries
 and their associated (new) extractedsources.

 We also calculate the variability indices at the timestamp of the
 the current image.
 """

 # NB we pull the new runcat id from the runningcatalog by matching with
 # temprunningcatalog via xtrsrc. (temprunningcatalog.runcat points at old
 # runcat entries).

 query = """\
INSERT INTO assocxtrsource
 (runcat
 ,xtrsrc
 ,type
 ,distance_arcsec
 ,r
 ,v_int
 ,eta_int
 ,f_datapoints
)
 SELECT t0.new_runcat_id
 ,t0.xtrsrc
 ,2
 ,t0.distance_arcsec
 ,t0.r
 ,t0.v_int_inter / t0.avg_f_int
 ,t0.eta_int_inter / t0.avg_f_int_weight
 ,t0.f_datapoints
 FROM (SELECT runcat.id AS new_runcat_id
 ,tmprc.xtrsrc
 ,tmprc.distance_arcsec
 ,tmprc.r
 ,tmprc.f_datapoints
 ,CASE WHEN tmprc.avg_f_int = 0.0
 THEN 0.000001
 ELSE avg_f_int
 END AS avg_f_int
 ,tmprc.avg_f_int_weight
 ,CASE WHEN tmprc.f_datapoints = 1
 THEN 0
 ELSE CASE WHEN ABS(tmprc.avg_f_int_sq - tmprc.avg_f_int * tmprc.avg_f_int) < 8e-14
 THEN 0
 ELSE SQRT(CAST(tmprc.f_datapoints AS DOUBLE PRECISION)
 * (tmprc.avg_f_int_sq - tmprc.avg_f_int * tmprc.avg_f_int)
 / (CAST(tmprc.f_datapoints AS DOUBLE PRECISION) - 1.0)
)
 END
 END AS v_int_inter
 ,CASE WHEN tmprc.f_datapoints = 1
 THEN 0
 ELSE (CAST(tmprc.f_datapoints AS DOUBLE PRECISION) /
 (CAST(tmprc.f_datapoints AS DOUBLE PRECISION) - 1.0))
 * (tmprc.avg_f_int_weight * tmprc.avg_weighted_f_int_sq -
 tmprc.avg_weighted_f_int * tmprc.avg_weighted_f_int)
 END AS eta_int_inter
 FROM (SELECT runcat as old_runcat_id
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
) one_to_many
 ,temprunningcatalog tmprc
 ,runningcatalog runcat
 WHERE tmprc.runcat = one_to_many.old_runcat_id
 AND tmprc.inactive = FALSE
 AND runcat.xtrsrc = tmprc.xtrsrc
) t0
 """
 tkp.db.execute(query, commit=True)

[docs]def _insert_1_to_many_replacement_assocxtrsource():
 """Insert links into the association table between the new runcat
 entries and the old extractedsources.
 (New to New ('basepoint') links have been added earlier).

 In this case, new entries in the runningcatalog and runningcatalog_flux
 were already added (for every extractedsource one), which will replace
 the existing ones in the runningcatalog.
 Therefore, we have to update the references to these new ids as well.
 So, we will append to assocxtrsource and delete the entries from
 runningcatalog_flux.

 NOTE:
 1. We do not update the distance_arcsec and r values of the pairs.

 TODO:
 1. Why not?

 """

 # NB we pull the new runcat id from the runningcatalog by matching with
 # temprunningcatalog via xtrsrc. (temprunningcatalog.runcat points at old
 # runcat entries).

 query = """\
INSERT INTO assocxtrsource
 (runcat
 ,xtrsrc
 ,type
 ,distance_arcsec
 ,r
 ,v_int
 ,eta_int
 ,f_datapoints
)
 SELECT r.id AS new_runcat_id
 ,a.xtrsrc
 ,6
 ,a.distance_arcsec
 ,a.r
 ,a.v_int
 ,a.eta_int
 ,a.f_datapoints
 FROM (SELECT runcat as old_runcat_id
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
) one_to_many
 ,temprunningcatalog tmprc
 ,runningcatalog r
 ,assocxtrsource a
 WHERE tmprc.runcat = one_to_many.old_runcat_id
 AND tmprc.inactive = FALSE
 AND r.xtrsrc = tmprc.xtrsrc
 AND a.runcat = tmprc.runcat
"""
 tkp.db.execute(query, commit=True)

[docs]def _insert_1_to_many_assocskyrgn():
 """
 Copy skyregion associations from old runcat entries for new one-to-many
 runningcatalog entries.
 """
 # NB we pull the new runcat id from the runningcatalog by matching with
 # temprunningcatalog via xtrsrc. (temprunningcatalog.runcat points at old
 # runcat entries).

 query = """\
INSERT INTO assocskyrgn
 (runcat
 ,skyrgn
 ,distance_deg
)
 SELECT r.id AS new_runcat_id
 ,a.skyrgn
 ,a.distance_deg
 FROM (SELECT runcat as old_runcat_id
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
) one_to_many
 ,temprunningcatalog tmprc
 ,runningcatalog r
 ,assocskyrgn a
 WHERE tmprc.runcat = one_to_many.old_runcat_id
 AND tmprc.inactive = FALSE
 AND r.xtrsrc = tmprc.xtrsrc
 AND a.runcat = tmprc.runcat
"""
 tkp.db.execute(query, commit=True)

[docs]def _insert_1_to_many_newsource():
 """Update the runcat id for the one-to-many associations,
 and delete the newsource entries of the old runcat id
 (the new ones have been added earlier).

 In this case, new entries in the runningcatalog and runningcatalog_flux
 were already added (for every extractedsource one), which will replace
 the existing ones in the runningcatalog.
 Therefore, we have to update the references to these new ids as well.
 """
 query = """\
INSERT INTO newsource
 (runcat
 ,trigger_xtrsrc
 ,newsource_type
 ,previous_limits_image
)
 SELECT r.id as new_runcat_id
 ,tr.trigger_xtrsrc
 ,tr.newsource_type
 ,tr.previous_limits_image
 FROM (SELECT runcat as old_runcat_id
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
) one_to_many
 ,temprunningcatalog tmprc
 ,runningcatalog r
 ,newsource tr
 WHERE tmprc.runcat = one_to_many.old_runcat_id
 AND tmprc.inactive = FALSE
 AND tr.runcat = one_to_many.old_runcat_id
 AND r.xtrsrc = tmprc.xtrsrc
"""
 tkp.db.execute(query, commit=True)

[docs]def _delete_1_to_many_inactive_assocskyrgn():
 """Delete the assocskyrgn links of the old runcat

 Since we replaced this runcat.id with multiple new ones, we now
 delete the old links.
 """
 query = """\
DELETE
 FROM assocskyrgn
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
"""
 tkp.db.execute(query, commit=True)

[docs]def _delete_1_to_many_inactive_newsource():
 """Delete the newsource sources of the old runcat

 Since we replaced this runcat.id with multiple new ones, we now
 delete the old one.
 """
 query = """\
DELETE
 FROM newsource
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
"""
 tkp.db.execute(query, commit=True)

[docs]def _delete_1_to_many_inactive_assocxtrsource():
 """Delete the association pairs of the old runcat from assocxtrsource

 NOTE: It might sound confusing, but those are not qualified
 as inactive in tempruncat (read below).
 Since we replaced this runcat.id with multiple new one, we first
 flag it as inactive, after which we delete it from the runningcatalog

 The subselect selects those valid "old" runcat ids (i.e.,
 the ones that were not set to inactive for the many-to-many associations).

 NOTE: We do not have to flag these rows as inactive,
 no furthr processing depends on these in the assoc run
 """

 #NB temprunningcatalog 'runcat' field still refers to old,
 #superceded runcat entries.
 query = """\
DELETE
 FROM assocxtrsource
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
 """
 tkp.db.execute(query, commit=True)

[docs]def _delete_1_to_many_inactive_runcat_flux():
 """Flag the old runcat ids in the runningcatalog to inactive

 Since we replaced this runcat.id with multiple new one, we first
 flag it as inactive, after which we delete it from the runningcatalog

 """
 query = """\
DELETE
 FROM runningcatalog_flux
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
"""
 tkp.db.execute(query, commit=True)

[docs]def _flag_1_to_many_inactive_runcat():
 """Flag the old runcat ids in the runningcatalog to inactive

 We do not delete them yet, because we still need to clear up all the
 superseded entries in assocskyrgn, etc.
 """
 query = """\
UPDATE runningcatalog
 SET inactive = TRUE
 WHERE id IN (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
"""
 tkp.db.execute(query, commit=True)

[docs]def _flag_1_to_many_inactive_tempruncat():
 """
 Flag the one-to-many associations from temprunningcatalog.

 (Since we are done processing them, now.)

 We do not delete them yet- if we did,
 we would not be able to cross-match extractedsources to determine
 which sources did not have a match in temprunningcatalog ('new' sources).

 """
 query = """\
UPDATE temprunningcatalog
 SET inactive = TRUE
 WHERE runcat IN (SELECT runcat
 FROM temprunningcatalog
 WHERE inactive = FALSE
 GROUP BY runcat
 HAVING COUNT(*) > 1
)
"""
 tkp.db.execute(query, commit=True)

This is the "master" 1-to-1 association query. We reuse it for associating
both null detections and monitoring list sources, tweaking the type as
appropriate.

ONE_TO_ONE_ASSOC_QUERY = """\
INSERT INTO assocxtrsource
 (runcat
 ,xtrsrc
 ,type
 ,distance_arcsec
 ,r
 ,v_int
 ,eta_int
 ,f_datapoints
)
 SELECT t0.runcat
 ,t0.xtrsrc
 ,%(type)s
 ,t0.distance_arcsec
 ,t0.r
 ,t0.v_int_inter / t0.avg_f_int
 ,t0.eta_int_inter / t0.avg_f_int_weight
 ,t0.f_datapoints
 FROM (SELECT tmprc.runcat
 ,tmprc.xtrsrc
 ,tmprc.distance_arcsec
 ,tmprc.r
 ,tmprc.f_datapoints
 ,CASE WHEN tmprc.avg_f_int = 0.0
 THEN 0.000001
 ELSE avg_f_int
 END AS avg_f_int
 ,tmprc.avg_f_int_weight
 ,CASE WHEN tmprc.f_datapoints = 1
 THEN 0
 ELSE CASE WHEN ABS(tmprc.avg_f_int_sq - tmprc.avg_f_int * tmprc.avg_f_int) < 8e-14
 THEN 0
 ELSE SQRT(CAST(tmprc.f_datapoints AS DOUBLE PRECISION)
 * (tmprc.avg_f_int_sq - tmprc.avg_f_int * tmprc.avg_f_int)
 / (CAST(tmprc.f_datapoints AS DOUBLE PRECISION) - 1.0)
)
 END
 END AS v_int_inter
 ,CASE WHEN tmprc.f_datapoints = 1
 THEN 0
 ELSE (CAST(tmprc.f_datapoints AS DOUBLE PRECISION)
 / (CAST(tmprc.f_datapoints AS DOUBLE PRECISION) - 1.0))
 * (tmprc.avg_f_int_weight * tmprc.avg_weighted_f_int_sq
 - tmprc.avg_weighted_f_int * tmprc.avg_weighted_f_int)
 END AS eta_int_inter
 FROM temprunningcatalog tmprc
 WHERE tmprc.inactive = FALSE
) t0
"""

[docs]def _insert_1_to_1_assoc():
 """
 Insert remaining associations from temprunningcatalog into assocxtrsource.

 We also calculate the variability indices at the timestamp of the
 the current image.
 """
 tkp.db.execute(ONE_TO_ONE_ASSOC_QUERY, {'type': 3}, commit=True)

[docs]def _update_1_to_1_runcat():
 """Update the running catalog with the values in temprunningcatalog"""
 query = """\
 UPDATE runningcatalog
 SET datapoints = (SELECT datapoints
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,zone = (SELECT zone
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,wm_ra = (SELECT wm_ra
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,wm_decl = (SELECT wm_decl
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_ra_err = (SELECT avg_ra_err
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_decl_err = (SELECT avg_decl_err
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,wm_uncertainty_ew = (SELECT wm_uncertainty_ew
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,wm_uncertainty_ns = (SELECT wm_uncertainty_ns
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_wra = (SELECT avg_wra
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_wdecl = (SELECT avg_wdecl
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_weight_ra = (SELECT avg_weight_ra
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_weight_decl = (SELECT avg_weight_decl
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,x = (SELECT x
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,y = (SELECT y
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 ,z = (SELECT z
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
 WHERE EXISTS (SELECT runcat
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog.id
 AND temprunningcatalog.inactive = FALSE
)
"""
 tkp.db.execute(query, commit=True)

[docs]def _update_1_to_1_runcat_flux():
 """Updates the fluxes in runningcatalog_flux of an existing band
 for an existing runcat source.

 If the runcat, band, stokes entry does exist in runcat_flux,
 it will be updated with the values from tempruncat.
 """
 query = """\
UPDATE runningcatalog_flux
 SET f_datapoints = (SELECT f_datapoints
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_f_peak = (SELECT avg_f_peak
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_f_peak_sq = (SELECT avg_f_peak_sq
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_f_peak_weight = (SELECT avg_f_peak_weight
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_weighted_f_peak = (SELECT avg_weighted_f_peak
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_weighted_f_peak_sq = (SELECT avg_weighted_f_peak_sq
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_f_int = (SELECT avg_f_int
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_f_int_sq = (SELECT avg_f_int_sq
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_f_int_weight = (SELECT avg_f_int_weight
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_weighted_f_int = (SELECT avg_weighted_f_int
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 ,avg_weighted_f_int_sq = (SELECT avg_weighted_f_int_sq
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
)
 WHERE EXISTS (SELECT runcat
 FROM temprunningcatalog
 WHERE temprunningcatalog.runcat = runningcatalog_flux.runcat
 AND temprunningcatalog.band = runningcatalog_flux.band
 AND temprunningcatalog.stokes = runningcatalog_flux.stokes
 AND temprunningcatalog.inactive = FALSE
 AND temprunningcatalog.f_datapoints > 1
)
"""
 cursor = tkp.db.execute(query, commit=True)
 return cursor.rowcount

[docs]def _insert_1_to_1_runcat_flux():
 """Insert the fluxes in runningcatalog_flux of a new band
 for an existing runcat source.

 If the runcat, band, stokes entry does not exist (yet) in runcat_flux,
 we need to insert the new values from tempruncat.
 This might be the case if a source has been observed at other frequencies,
 but not in the current band, so there does not exist an entry
 for this band.

 """

 query = """\
INSERT INTO runningcatalog_flux
 (runcat
 ,band
 ,stokes
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT runcat
 ,band
 ,stokes
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
 FROM temprunningcatalog
 WHERE inactive = FALSE
 AND f_datapoints=1
"""
 cursor = tkp.db.execute(query, commit=True)
 return cursor.rowcount

[docs]def _insert_new_runcat(image_id):
 """Insert previously unknown sources into the ``runningcatalog`` table.

 Extractedsources for which no counterpart was found in the
 runningcatalog (i.e. no pair exists in tempruncat),
 will be added as a new source to the assocxtrsource,
 runningcatalog and runningcatalog_flux tables.

 """

 # NOTE: Here we select all (inactive TRUE&FALSE) tempruncat entries
 # source in order to exclude all extractedsources that have been associated.
 query = """\
INSERT INTO runningcatalog
 (xtrsrc
 ,dataset
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,avg_ra_err
 ,avg_decl_err
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
)
 SELECT new_src.xtrsrc
 ,new_src.dataset
 ,new_src.datapoints
 ,new_src.zone
 ,new_src.wm_ra
 ,new_src.wm_decl
 ,new_src.avg_ra_err
 ,new_src.avg_decl_err
 ,new_src.wm_uncertainty_ew
 ,new_src.wm_uncertainty_ns
 ,new_src.avg_wra
 ,new_src.avg_wdecl
 ,new_src.avg_weight_ra
 ,new_src.avg_weight_decl
 ,new_src.x
 ,new_src.y
 ,new_src.z
 FROM (SELECT x0.id AS xtrsrc
 ,i0.dataset
 ,1 AS datapoints
 ,x0.zone
 ,x0.ra AS wm_ra
 ,x0.decl AS wm_decl
 ,x0.ra_err AS avg_ra_err
 ,x0.decl_err AS avg_decl_err
 ,x0.uncertainty_ew AS wm_uncertainty_ew
 ,x0.uncertainty_ns AS wm_uncertainty_ns
 ,x0.ra / (x0.uncertainty_ew * x0.uncertainty_ew) AS avg_wra
 ,x0.decl / (x0.uncertainty_ns * x0.uncertainty_ns) AS avg_wdecl
 ,1 / (x0.uncertainty_ew * x0.uncertainty_ew) AS avg_weight_ra
 ,1 / (x0.uncertainty_ns * x0.uncertainty_ns) AS avg_weight_decl
 ,x0.x
 ,x0.y
 ,x0.z
 FROM extractedsource x0
 ,image i0
 WHERE x0.image = i0.id
 AND x0.image = %s
 AND x0.extract_type = 0
) new_src
 LEFT OUTER JOIN temprunningcatalog tmprc
 ON new_src.xtrsrc = tmprc.xtrsrc
 WHERE tmprc.xtrsrc IS NULL
"""
 cursor = tkp.db.execute(query, (image_id,), True)
 ins = cursor.rowcount
 if ins > 0:
 logger.debug("Added %s new sources to runningcatalog" % ins)

[docs]def _insert_new_runcat_flux(image_id):
 """
	Insert previously unknown sources into the ``runningcatalog_flux`` table.

	(i.e. those without *any* previous runcat-counterpart)
 """
 query = """\
INSERT INTO runningcatalog_flux
 (runcat
 ,band
 ,stokes
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT r0.id
 ,i0.band
 ,i0.stokes
 ,1 AS f_datapoints
 ,x0.f_peak
 ,x0.f_peak * x0.f_peak
 ,1 / (x0.f_peak_err * x0.f_peak_err)
 ,x0.f_peak / (x0.f_peak_err * x0.f_peak_err)
 ,x0.f_peak * x0.f_peak / (x0.f_peak_err * x0.f_peak_err)
 ,x0.f_int
 ,x0.f_int * x0.f_int
 ,1 / (x0.f_int_err * x0.f_int_err)
 ,x0.f_int / (x0.f_int_err * x0.f_int_err)
 ,x0.f_int * x0.f_int / (x0.f_int_err * x0.f_int_err)
 FROM image i0
 ,(SELECT x1.id AS xtrsrc
 FROM extractedsource x1
 LEFT OUTER JOIN temprunningcatalog tmprc
 ON x1.id = tmprc.xtrsrc
 WHERE x1.image = %(image_id)s
 AND x1.extract_type = 0
 AND tmprc.xtrsrc IS NULL
) new_src
 ,runningcatalog r0
 ,extractedsource x0
 WHERE i0.id = %(image_id)s
 AND r0.xtrsrc = new_src.xtrsrc
 AND x0.id = r0.xtrsrc
"""
 tkp.db.execute(query, {'image_id': image_id}, True)

[docs]def _insert_new_runcat_skyrgn_assocs(image_id):
 """
 Process newly created entries from the runningcatalog,
 determine which skyregions they lie within.

 Upon creation of a new runningcatalog entry,
 we need to determine which previous fields of view (skyrgns)
 we expect to see it in.
 This knowledge helps us to make accurate guesses as whether a new
 source is really transient or simply being surveyed for the first time.

 .. note:

 This could be made more efficient, at the cost of added complexity,
 by tracking which skyregions overlap,
 and then only testing for membership of overlapping regions.

 """

 # First, mark membership in the skyregion of the image of initial detection.
 # We look for extracted sources from this image
 # that are not in temprunningcatalog, i.e. have no association candidates.

 # By dealing with these separately, we save a number of radius comparison
 # operations proportional to the number of new sources in this field.
 assocskyrgn_parent_qry = """\
INSERT INTO assocskyrgn
 (runcat
 ,skyrgn
)
SELECT t0.runcat
 ,t0.skyrgn
 FROM (SELECT ex.id AS xtrsrc
 ,rc.id as runcat
 ,im.skyrgn
 FROM extractedsource ex
 ,runningcatalog rc
 ,image im
 WHERE ex.image = %(img_id)s
 AND rc.xtrsrc = ex.id
 AND ex.image = im.id
) t0
 LEFT OUTER JOIN temprunningcatalog tmprc
 ON t0.xtrsrc = tmprc.xtrsrc
WHERE tmprc.xtrsrc IS NULL
"""
 tkp.db.execute(assocskyrgn_parent_qry, {'img_id':image_id}, True)

 #Now search all the other skyregions *in same dataset* to determine matches:
 assocskyrgn_others_qry = """\
INSERT INTO assocskyrgn
 (runcat
 ,skyrgn
 ,distance_deg
)
SELECT new_src.runcat as runcatid
 ,sky.id as skyrgnid
 ,DEGREES(2 * ASIN(SQRT((rc1.x - sky.x) * (rc1.x - sky.x)
 + (rc1.y - sky.y) * (rc1.y - sky.y)
 + (rc1.z - sky.z) * (rc1.z - sky.z)
) / 2)
) AS idistance_deg
 FROM skyregion sky
 ,runningcatalog rc1
 ,(SELECT t0.runcat
 ,t0.self_skyrgn
 FROM (SELECT ex.id AS xtrsrc
 ,rc0.id as runcat
 ,im.skyrgn as self_skyrgn
 FROM extractedsource ex
 ,runningcatalog rc0
 ,image im
 WHERE ex.image = %(img_id)s
 AND rc0.xtrsrc = ex.id
 AND ex.image = im.id
) t0
 LEFT OUTER JOIN temprunningcatalog tmprc
 ON t0.xtrsrc = tmprc.xtrsrc
 WHERE tmprc.xtrsrc IS NULL
) new_src
 WHERE rc1.id = new_src.runcat
 AND sky.dataset = rc1.dataset
 AND sky.id <> new_src.self_skyrgn
 AND DEGREES(2 * ASIN(SQRT((rc1.x - sky.x) * (rc1.x - sky.x)
 + (rc1.y - sky.y) * (rc1.y - sky.y)
 + (rc1.z - sky.z) * (rc1.z - sky.z)
) / 2)
) < sky.xtr_radius
"""
 tkp.db.execute(assocskyrgn_others_qry, {'img_id':image_id}, True)

[docs]def _insert_new_assocxtrsource(image_id):
 """
 Insert new associations for previously unknown sources.
 """

 query = """\
INSERT INTO assocxtrsource
 (runcat
 ,xtrsrc
 ,type
 ,distance_arcsec
 ,r
 ,v_int
 ,eta_int
 ,f_datapoints
)
 SELECT r0.id AS runcat
 ,r0.xtrsrc
 ,4
 ,0
 ,0
 ,0
 ,0
 ,1
 FROM (SELECT x1.id AS xtrsrc
 FROM extractedsource x1
 LEFT OUTER JOIN temprunningcatalog tmprc
 ON x1.id = tmprc.xtrsrc
 WHERE x1.image = %(image_id)s
 AND x1.extract_type = 0
 AND tmprc.xtrsrc IS NULL
) new_src
 ,runningcatalog r0
 WHERE r0.xtrsrc = new_src.xtrsrc
"""
 tkp.db.execute(query, {'image_id':image_id}, True)

[docs]def _determine_newsource_previous_limits(image_id, new_source_sigma_margin):
 """
 Determines which new-runcat sources are also probably transient.

 Looks up previous images relevant to this source-position, using the
 following criteria - images must:

 - overlap the new-source position, according to the skyregion
 information;
 - be in the same dataset;
 - be in the same frequency band;
 - have an earlier timestamp than the current image;
 - have not been rejected.

 For those images we calculate the per-previous-image detection-thresholds,
 which are defined as follows.

 A new source is 'possibly transient' (type 0) if it
 passes the following tests:

 - Was not detected in a skyregion being surveyed for the first time.
 - Has a flux-value such that:

 flux > MIN_OVER_I [(rms_min_I*(det_I + new_source_sigma_margin)]

 (where I indexes the images)
 i.e. if it was a steady-source, it should have been already detected if
 it was in the *low-RMS* area of the previous image with best detection
 threshold, even allowing for noise fluctuations.

 Furthermore, a new source is 'likely transient' (type 1) if it is additionally
 bright enough that, if it were a steady source, it should have been detected
 even if it was in the *high-RMS* area of the aforementioned 'low rms_min'
 image, i.e.

 flux > (rms_max_I*(det_I + new_source_sigma_margin))

 Note that, once we have located the image with best 'low rms threshold',
 we then use that image to *also* generate the 'high rms threshold'.
 Strictly speaking, this is non-optimal - we should run a fresh search
 against all images to find the best 'high rms threshold'. However, I'm
 working on the assumption that most of
 the time the image with best low-threshold will also have best
 high-threshold, and even when that is not the case we won't lose too much
 accuracy. The benefits of this assumption are simplicity, and possibly
 faster performance, but this might need to be re-examined in future,
 especially if we start ingesting images of wildly differing sizes and
 noise non-uniformity characteristics (e.g. single pointings vs mosaics) etc.

 We use peak flux (f_peak) as the flux value here, since that is likely
 to be the deciding factor in whether a source gets blindly extracted or not.
 (NB This is a hunch, rigorous investigation welcome.)

 """

 # This is another hairy query, but it breaks down like so:
 #
 # The innermost SELECT (unassoc_xtr) is a standard query
 # that we use to grab extractedsources from the current image that
 # do not have a candidate runcat counterpart from previous images.
 # Note that, by the time this query is run, a new runningcatalog entry has
 # been inserted for them, and the skyregion matching has been done.
 #
 # Next, we match those new sources with previous images overlapping
 # their position according to the criteria in the docstring above,
 # and calculate detection thresholds for each of those images.
 #
 # We then thinly wrap the resulting 'matched_imgs' set in a query
 # to sort them by low_flux_threshold, with high_flux_threshold as the
 # secondary criteria in case of a tie ('ordered_matched_imgs').
 #
 # Finally, we pull out the results we want - new source flux above the low
 # threshold, image ID of the 'best' previous image according to the sorting,
 # and run a final CASE to determine if the new source also passes the
 # high flux threshold.
 #

 query = """\
INSERT INTO newsource
 (runcat
 ,trigger_xtrsrc
 ,newsource_type
 ,previous_limits_image
)
 SELECT new_src_runcat_id AS runcat
 ,new_src_xtr_id AS trigger_xtrsrc
 ,CASE WHEN new_src_flux > high_flux_threshold
 THEN 1
 ELSE 0
 END as newsource_type
 ,prev_img_id AS previous_limits_image
 FROM (SELECT new_src_runcat_id
 ,new_src_xtr_id
 ,new_src_flux
 ,prev_img_id
 ,low_flux_threshold
 ,high_flux_threshold
 ,ROW_NUMBER() OVER (
 PARTITION BY new_src_xtr_id
 ORDER BY low_flux_threshold ASC,
 high_flux_threshold ASC
) AS row_num
 FROM (SELECT runcat1.id as new_src_runcat_id
 ,unassoc_xtr.xtrsrc_id as new_src_xtr_id
 ,unassoc_xtr.f_peak as new_src_flux
 ,prev_imgs.id as prev_img_id
 ,(prev_imgs.rms_min *
 (prev_imgs.detection_thresh + %(sigma_margin)s))
 AS low_flux_threshold
 ,(prev_imgs.rms_max *
 (prev_imgs.detection_thresh + %(sigma_margin)s))
 AS high_flux_threshold
 FROM (SELECT x1.id AS xtrsrc_id
 ,x1.f_peak
 FROM extractedsource x1
 WHERE x1.image = %(image_id)s
 AND x1.id NOT IN (SELECT xtrsrc FROM temprunningcatalog)
 AND x1.extract_type = 0
) unassoc_xtr
 ,runningcatalog runcat1
 ,assocskyrgn asky1
 ,image this_img
 ,image prev_imgs
 WHERE this_img.id = %(image_id)s
 AND runcat1.xtrsrc = unassoc_xtr.xtrsrc_id
 AND asky1.runcat = runcat1.id
 AND prev_imgs.dataset = this_img.dataset
 AND prev_imgs.skyrgn = asky1.skyrgn
 AND prev_imgs.band = this_img.band
 AND this_img.taustart_ts > prev_imgs.taustart_ts
 AND prev_imgs.id NOT IN (select image from rejection)
) matched_imgs
) ordered_matched_imgs
 WHERE row_num = 1
 AND new_src_flux > low_flux_threshold
"""
 params = {'image_id': image_id,
 'sigma_margin': new_source_sigma_margin}
 cursor = tkp.db.execute(query, params, commit=True)
 ins = cursor.rowcount
 if ins > 0:
 logger.debug("Added %s new sources to newsource table" % (ins,))

[docs]def _update_ff_runcat_extractedsource():
 """
 We are about to delete the runcats that are inactivated, and
 therefore have to set the ff_runcat reference in extractedsource to NULL.
 """
 query = """\
UPDATE extractedsource
 SET ff_runcat = NULL
 WHERE EXISTS (SELECT id
 FROM runningcatalog
 WHERE runningcatalog.id = extractedsource.ff_runcat
 AND runningcatalog.inactive = TRUE
)
"""
 cursor = tkp.db.execute(query, commit=True)
 cnt = cursor.rowcount
 if cnt > 0:
 logger.debug("Unset ff_runcat for %s extractedsources" % cnt)

[docs]def _delete_inactive_runcat():
 """Delete the one-to-many associations from temprunningcatalog,
 and delete the inactive rows from runningcatalog.

 After the one-to-many associations have been processed,
 they can be deleted from the temporary table and
 the runningcatalog.
 """
 query = """\
DELETE
 FROM runningcatalog
 WHERE inactive = TRUE
"""
 tkp.db.execute(query, commit=True)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/configstore.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.configstore

"""
store and retrieve pipeline settings to/from database
"""
import logging
from tkp.db import execute
from tkp.utility import adict

the types of values we accept
types = [str, int, float, bool]

logger = logging.getLogger(__name__)

store_query = """
INSERT INTO config (dataset, section, key, value, type)
 VALUES (%(dataset)s, %(section)s, %(key)s, %(value)s, %(type)s);
"""

[docs]def store_config(config, dataset_id):
 """
 Store a config defined in d into the database.

 Args:
 config (dict): nested dict containing config, [section][key] -> [value]
 """
 logger.info("storing config to database for dataset %s" % dataset_id)
 error = "type of value %s, key %s in section %s has type %s, we only do %s"
 for section, v in config.items():
 for key, value in v.items():
 if key == 'password':
 logger.debug("not storing %s password to DB" % section)
 continue
 if type(value) not in types:
 msg = error % (value, key, section, type(value).__name__,
 ", ".join(t.__name__ for t in types))
 logger.error(msg)
 raise TypeError(msg)

 values = {'dataset': dataset_id, 'section': section, 'key': key,
 'value': str(value), 'type': type(value).__name__}
 execute(store_query, values)

fetch_query = """
SELECT section, key, value, type FROM config where dataset=%(dataset)s;
"""

[docs]def fetch_config(dataset_id):
 """
 Retrieve the stored config for given dataset id

 Returns:
 nested dict [section][key] -> [value]
 """
 logger.info("fetching config from database for dataset %s" % dataset_id)
 error = "type in database is %s but we only support %s"
 result = execute(fetch_query, {'dataset': dataset_id}).fetchall()
 config = adict()
 for section, key, value, type_ in result:
 if type_ not in (t.__name__ for t in types):
 msg = error % (type_, ", ".join(t.__name__ for t in types))
 logger.error(msg)
 raise TypeError(msg)
 converted = eval(type_)(value)
 if not section in config:
 config[section] = adict()
 config[section][key] = converted
 return config

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/sourcefinder/deconv.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.sourcefinder.deconv

"""
Gaussian deconvolution.
"""

from math import sin, cos, atan, sqrt, pi

[docs]def deconv(fmaj, fmin, fpa, cmaj, cmin, cpa):
 """
 Deconvolve a Gaussian "beam" from a Gaussian component.

 When we fit an elliptical Gaussian to a point in our image, we are
 actually fitting to a convolution of the physical shape of the source with
 the beam pattern of our instrument. This results in the fmaj/fmin/fpa
 arguments to this function.

 Since the shape of the (clean) beam (arguments cmaj/cmin/cpa) is known, we
 can deconvolve it from the fitted parameters to get the "real" underlying
 physical source shape, which is what this function returns.

 Args:
 fmaj (float): Fitted major axis
 fmin (float): Fitted minor axis
 fpa (float): Fitted position angle of major axis
 cmaj (float): Clean beam major axis
 cmin (float): Clean beam minor axis
 cpa (float): Clean beam position angle of major axis

 Returns:
 rmaj (float): Real major axis
 rmin (float): Real minor axis
 rpa (float): Real position angle of major axis
 ierr (int): Number of components which failed to deconvolve
 """
 HALF_RAD = 90.0 / pi
 cmaj2 = cmaj * cmaj
 cmin2 = cmin * cmin
 fmaj2 = fmaj * fmaj
 fmin2 = fmin * fmin
 theta = (fpa - cpa) / HALF_RAD
 det = ((fmaj2 + fmin2) - (cmaj2 + cmin2)) / 2.0
 rhoc = (fmaj2 - fmin2) * cos(theta) - (cmaj2 - cmin2)
 sigic2 = 0.0
 rhoa = 0.0
 ierr = 0

 if abs(rhoc) > 0.0:
 sigic2 = atan((fmaj2 - fmin2) * sin(theta) / rhoc)
 rhoa = (((cmaj2 - cmin2) - (fmaj2 - fmin2) * cos(theta)) /
 (2.0 * cos(sigic2)))

 rpa = sigic2 * HALF_RAD + cpa
 rmaj = det - rhoa
 rmin = det + rhoa

 if rmaj < 0:
 ierr += 1
 rmaj = 0
 if rmin < 0:
 ierr += 1
 rmin = 0

 rmaj = sqrt(rmaj)
 rmin = sqrt(rmin)
 if rmaj < rmin:
 rmaj, rmin = rmin, rmaj
 rpa += 90

 rpa = (rpa + 900) % 180
 if not abs(rmaj):
 rpa = 0.0
 elif not abs(rmin) and (45.0 < abs(rpa-fpa) < 135.0):
 rpa = (rpa + 450.0) % 180.0

 return rmaj, rmin, rpa, ierr

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/sourcefinder/gaussian.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.sourcefinder.gaussian

"""
Definition of a two dimensional elliptical Gaussian.
"""

from numpy import exp, log, cos, sin

[docs]def gaussian(height, center_x, center_y, semimajor, semiminor, theta):
 """Return a 2D Gaussian function with the given parameters.

 Args:

 height (float): (z-)value of the 2D Gaussian

 center_x (float): x center of the Gaussian

 center_y (float): y center of the Gaussian

 semimajor (float): major axis of the Gaussian

 semiminor (float): minor axis of the Gaussian

 theta (float): angle of the 2D Gaussian in radians, measured
 between the semi-major and y axes, in counterclockwise
 direction.

 Returns:
 lambda: 2D Gaussian (function of pixel coords ``(x,y)``)
 """

 return lambda x, y: height * exp(
 -log(2.0) * (((cos(theta) * (x - center_x) +
 sin(theta) * (y - center_y)) /
 semiminor)**2.0 +
 ((cos(theta) * (y - center_y) -
 sin(theta) * (x - center_x)) /
 semimajor)**2.))

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/sourcefinder/image.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.sourcefinder.image

"""
Some generic utility routines for number handling and
calculating (specific) variances
"""

import logging
import itertools
import numpy
from tkp.utility import containers
from tkp.utility.memoize import Memoize
from tkp.sourcefinder import utils
from tkp.sourcefinder import stats
from tkp.sourcefinder import extract
try:
 import ndimage
except ImportError:
 from scipy import ndimage

logger = logging.getLogger(__name__)

#
Hard-coded configuration parameters; not user settable.
#
INTERPOLATE_ORDER = 1 # Spline order for grid interpolation
MEDIAN_FILTER = 0 # If non-zero, apply a median filter of size
 # MEDIAN_FILTER to the background and RMS grids prior
 # to interpolating.
MF_THRESHOLD = 0 # If MEDIAN_FILTER is non-zero, only use the filtered
 # grid when the (absolute) difference between the raw
 # and filtered grids is larger than MF_THRESHOLD.
DEBLEND_MINCONT = 0.005 # Min. fraction of island flux in deblended subisland
STRUCTURING_ELEMENT = [[0,1,0], [1,1,1], [0,1,0]] # Island connectiivty

[docs]class ImageData(object):
 """Encapsulates an image in terms of a numpy array + meta/headerdata.

 This is your primary contact point for interaction with images: it icludes
 facilities for source extraction and measurement, etc.
 """

 def __init__(self, data, beam, wcs, margin=0, radius=0, back_size_x=32,
 back_size_y=32, residuals=True
):
 """Sets up an ImageData object.

 Args:
 - data (2D numpy.ndarray): actual image data
 - wcs (utility.coordinates.wcs): world coordinate system
 specification
 - beam (3-tuple): beam shape specification as
 (semimajor, semiminor, theta)

 """

 # Do data, wcs and beam need deepcopy?
 # Probably not (memory overhead, in particular for data),
 # but then the user shouldn't change them outside ImageData in the
 # mean time
 self.rawdata = data # a 2D numpy array
 self.wcs = wcs # a utility.coordinates.wcs instance
 self.beam = beam # tuple of (semimaj, semimin, theta)
 self.clip = {}
 self.labels = {}
 self.freq_low = 1
 self.freq_high = 1

 self.back_size_x = back_size_x
 self.back_size_y= back_size_y
 self.margin = margin
 self.radius = radius
 self.residuals = residuals

 ###
 # #
 # Properties and attributes. #
 # #
 # Properties are attributes managed by methods; rather than calling the #
 # method directly, the attribute automatically invokes it. We can use #
 # this to do cunning transparent caching ("memoizing") etc; see the #
 # Memoize class. #
 # #
 # clearcache() clears all the memoized data, which can get quite large. #
 # It may be wise to call this, for example, in an exception handler #
 # dealing with MemoryErrors. #
 # #
 ###
 @Memoize
 def _grids(self):
 """Gridded RMS and background data for interpolating"""
 return self.__grids()
 grids = property(fget=_grids, fdel=_grids.delete)

 @Memoize
 def _backmap(self):
 """Background map"""
 if not hasattr(self, "_user_backmap"):
 return self._interpolate(self.grids['bg'])
 else:
 return self._user_backmap

 def _set_backmap(self, bgmap):
 self._user_backmap = bgmap
 del(self.backmap)
 del(self.data_bgsubbed)

 backmap = property(fget=_backmap, fdel=_backmap.delete, fset=_set_backmap)

 @Memoize
 def _get_rm(self):
 """RMS map"""
 if not hasattr(self, "_user_noisemap"):
 return self._interpolate(self.grids['rms'], roundup=True)
 else:
 return self._user_noisemap

 def _set_rm(self, noisemap):
 self._user_noisemap = noisemap
 del(self.rmsmap)

 rmsmap = property(fget=_get_rm, fdel=_get_rm.delete, fset=_set_rm)

 @Memoize
 def _get_data(self):
 """Masked image data"""
 # We will ignore all the data which is masked for the rest of the
 # sourcefinding process. We build up the mask by stacking ("or-ing
 # together") a number of different effects:
 #
 # * A margin from the edge of the image;
 # * Any data outside a given radius from the centre of the image;
 # * Data which is "obviously" bad (equal to 0 or NaN).
 mask = numpy.zeros((self.xdim, self.ydim))
 if self.margin:
 margin_mask = numpy.ones((self.xdim, self.ydim))
 margin_mask[self.margin:-self.margin, self.margin:-self.margin] = 0
 mask = numpy.logical_or(mask, margin_mask)
 if self.radius:
 radius_mask = utils.circular_mask(self.xdim, self.ydim, self.radius)
 mask = numpy.logical_or(mask, radius_mask)
 mask = numpy.logical_or(mask, numpy.where(self.rawdata == 0, 1, 0))
 mask = numpy.logical_or(mask, numpy.isnan(self.rawdata))
 return numpy.ma.array(self.rawdata, mask=mask)
 data = property(fget=_get_data, fdel=_get_data.delete)

 @Memoize
 def _get_data_bgsubbed(self):
 """Background subtracted masked image data"""
 return self.data - self.backmap
 data_bgsubbed = property(fget=_get_data_bgsubbed,
 fdel=_get_data_bgsubbed.delete)

 @property
 def xdim(self):
 """X pixel dimension of (unmasked) data"""
 return self.rawdata.shape[0]

 @property
 def ydim(self):
 """Y pixel dimension of (unmasked) data"""
 return self.rawdata.shape[1]

 @property
 def pixmax(self):
 """Maximum pixel value (pre-background subtraction)"""
 return self.data.max()

 @property
 def pixmin(self):
 """Minimum pixel value (pre-background subtraction)"""
 return self.data.min()

[docs] def clearcache(self):
 """Zap any calculated data stored in this object.

 Clear the background and rms maps, labels, clip, and any locally held
 data. All of these can be reconstructed from the data accessor.

 Note that this *must* be run to pick up any new settings.
 """
 self.labels.clear()
 self.clip.clear()
 del(self.backmap)
 del(self.rmsmap)
 del(self.data)
 del(self.data_bgsubbed)
 del(self.grids)
 if hasattr(self, 'residuals_from_gauss_fitting'):
 del(self.residuals_from_gauss_fitting)
 if hasattr(self, 'residuals_from_deblending'):
 del(self.residuals_from_deblending)

 ###
 # #
 # General purpose image handling. #
 # #
 # Routines for saving and trimming data, and calculating background/RMS #
 # maps (in conjuntion with the properties above). #
 # #
 ###

 # Private "support" methods

 def __grids(self):
 """Calculate background and RMS grids of this image.

 These grids can be interpolated up to make maps of the original image
 dimensions: see _interpolate().

 This is called automatically when ImageData.backmap,
 ImageData.rmsmap or ImageData.fdrmap is first accessed.
 """

 # there's no point in working with the whole of the data array
 # if it's masked.
 useful_chunk = ndimage.find_objects(numpy.where(self.data.mask, 0, 1))
 assert(len(useful_chunk) == 1)
 useful_data = self.data[useful_chunk[0]]
 my_xdim, my_ydim = useful_data.shape

 rmsgrid, bggrid = [], []
 for startx in xrange(0, my_xdim, self.back_size_x):
 rmsrow, bgrow = [], []
 for starty in xrange(0, my_ydim, self.back_size_y):
 chunk = useful_data[
 startx:startx + self.back_size_x,
 starty:starty + self.back_size_y
].ravel()
 if not chunk.any():
 rmsrow.append(False)
 bgrow.append(False)
 continue
 chunk, sigma, median, num_clip_its = stats.sigma_clip(
 chunk, self.beam)
 if len(chunk) == 0 or not chunk.any():
 rmsrow.append(False)
 bgrow.append(False)
 else:
 mean = numpy.mean(chunk)
 rmsrow.append(sigma)
 # In the case of a crowded field, the distribution will be
 # skewed and we take the median as the background level.
 # Otherwise, we take 2.5 * median - 1.5 * mean. This is the
 # same as SExtractor: see discussion at
 # <http://terapix.iap.fr/forum/showthread.php?tid=267>.
 # (mean - median) / sigma is a quick n' dirty skewness
 # estimator devised by Karl Pearson.
 if numpy.fabs(mean - median) / sigma >= 0.3:
 logger.debug(
 'bg skewed, %f clipping iterations', num_clip_its)
 bgrow.append(median)
 else:
 logger.debug(
 'bg not skewed, %f clipping iterations', num_clip_its)
 bgrow.append(2.5 * median - 1.5 * mean)

 rmsgrid.append(rmsrow)
 bggrid.append(bgrow)

 rmsgrid = numpy.ma.array(
 rmsgrid, mask=numpy.where(numpy.array(rmsgrid) == False, 1, 0))
 bggrid = numpy.ma.array(
 bggrid, mask=numpy.where(numpy.array(bggrid) == False, 1, 0))

 return {'rms': rmsgrid, 'bg': bggrid}

 def _interpolate(self, grid, roundup=False):
 """
 Interpolate a grid to produce a map of the dimensions of the image.

 Args:

 grid (numpy.ma.MaskedArray)

 Kwargs:

 roundup (bool)

 Returns:

 (numpy.ma.MaskedArray)

 Used to transform the RMS, background or FDR grids produced by
 L{_grids()} to a map we can compare with the image data.

 If roundup is true, values of the resultant map which are lower than
 the input grid are trimmed.
 """
 # there's no point in working with the whole of the data array if it's
 # masked.
 useful_chunk = ndimage.find_objects(numpy.where(self.data.mask, 0, 1))
 assert(len(useful_chunk) == 1)
 my_xdim, my_ydim = self.data[useful_chunk[0]].shape

 if MEDIAN_FILTER:
 f_grid = ndimage.median_filter(grid, MEDIAN_FILTER)
 if MF_THRESHOLD:
 grid = numpy.where(
 numpy.fabs(f_grid - grid) > MF_THRESHOLD, f_grid, grid
)
 else:
 grid = f_grid

 # Bicubic spline interpolation
 xratio = float(my_xdim)/self.back_size_x
 yratio = float(my_ydim)/self.back_size_y
 # First arg: starting point. Second arg: ending point. Third arg:
 # 1j * number of points. (Why is this complex? Sometimes, NumPy has an
 # utterly baffling API...)
 slicex = slice(-0.5, -0.5+xratio, 1j*my_xdim)
 slicey = slice(-0.5, -0.5+yratio, 1j*my_ydim)
 my_map = numpy.ma.MaskedArray(numpy.zeros(self.data.shape),
 mask = self.data.mask)
 my_map[useful_chunk[0]] = ndimage.map_coordinates(
 grid, numpy.mgrid[slicex, slicey],
 mode='nearest', order=INTERPOLATE_ORDER)

 # If the input grid was entirely masked, then the output map must
 # also be masked: there's no useful data here. We don't search for
 # sources on a masked background/RMS, so this data will be cleanly
 # skipped by the rest of the sourcefinder
 if numpy.ma.getmask(grid).all():
 my_map.mask = True
 elif roundup:
 # In some cases, the spline interpolation may produce values
 # lower than the minimum value in the map. If required, these
 # can be trimmed off. No point doing this if the map is already
 # fully masked, though.
 my_map = numpy.ma.MaskedArray(
 data = numpy.where(
 my_map >= numpy.min(grid), my_map, numpy.min(grid)),
 mask = my_map.mask
)
 return my_map

 ###
 # #
 # Source extraction. #
 # #
 # Provides for both traditional (islands-above-RMS) and FDR source #
 # extraction systems. #
 # #
 ###

[docs] def extract(self, det, anl, noisemap=None, bgmap=None, labelled_data=None,
 labels=None, deblend_nthresh=0, force_beam=False):

 """
 Kick off conventional (ie, RMS island finding) source extraction.

 Kwargs:

 det (float): detection threshold, as a multiple of the RMS
 noise. At least one pixel in a source must exceed this
 for it to be regarded as significant.

 anl (float): analysis threshold, as a multiple of the RMS
 noise. All the pixels within the island that exceed
 this will be used when fitting the source.

 noisemap (numpy.ndarray):

 bgmap (numpy.ndarray):

 deblend_nthresh (int): number of subthresholds to use for
 deblending. Set to 0 to disable.

 force_beam (bool): force all extractions to have major/minor axes
 equal to the restoring beam

 Returns:
 :class:`tkp.utility.containers.ExtractionResults`
 """

 if anl > det:
 logger.warn(
 "Analysis threshold is higher than detection threshold"
)
 if (type(bgmap).__name__ == 'ndarray' or
 type(bgmap).__name__ == 'MaskedArray'):
 if bgmap.shape != self.backmap.shape:
 raise IndexError("Background map has wrong shape")
 else:
 self.backmap = bgmap

 if (type(noisemap).__name__ == 'ndarray' or
 type(noisemap).__name__ == 'MaskedArray'):
 if noisemap.shape != self.rmsmap.shape:
 raise IndexError("Noisemap has wrong shape")
 if noisemap.min() < 0:
 raise ValueError("RMS noise cannot be negative")
 else:
 self.rmsmap = noisemap

 if labelled_data is not None and labelled_data.shape != self.data.shape:
 raise ValueError("Labelled map is wrong shape")

 return self._pyse(
 det * self.rmsmap, anl * self.rmsmap, deblend_nthresh, force_beam,
 labelled_data=labelled_data, labels=labels
)

[docs] def reverse_se(self, det):
 """Run source extraction on the negative of this image.

 Obviously, there should be no sources in the negative image, so this
 tells you about the false positive rate.

 We need to clear cached data -- backgroung map, cached clips, etc --
 before & after doing this, as they'll interfere with the normal
 extraction process. If this is regularly used, we'll want to
 implement a separate cache.
 """
 self.labels.clear()
 self.clip.clear()
 self.data_bgsubbed *= -1
 results = self.extract(det=det)
 self.data_bgsubbed *= -1
 self.labels.clear()
 self.clip.clear()
 return results

[docs] def fd_extract(self, alpha, anl=None, noisemap=None,
 bgmap=None, deblend_nthresh=0, force_beam=False
):
 """False Detection Rate based source extraction.
 The FDR procedure guarantees that <FDR> < alpha.

 See `Hopkins et al., AJ, 123, 1086 (2002)
 <http://adsabs.harvard.edu/abs/2002AJ....123.1086H>`_.
 """

 # The correlation length in config.py is used not only for the
 # calculation of error bars with the Condon formulae, but also for
 # calculating the number of independent pixels.
 corlengthlong, corlengthshort = utils.calculate_correlation_lengths(
 self.beam[0], self.beam[1])

 C_n = (1.0 / numpy.arange(
 round(0.25 * numpy.pi * corlengthlong *
 corlengthshort + 1))[1:]).sum()

 # Calculate the FDR threshold
 # Things will go terribly wrong in the line below if the interpolated
 # noise values get very close or below zero. Use INTERPOLATE_ORDER=1
 # or the roundup option.
 if (type(bgmap).__name__ == 'ndarray' or
 type(bgmap).__name__ == 'MaskedArray'):
 if bgmap.shape != self.backmap.shape:
 raise IndexError("Background map has wrong shape")
 else:
 self.backmap = bgmap
 if (type(noisemap).__name__ == 'ndarray' or
 type(noisemap).__name__ == 'MaskedArray'):
 if noisemap.shape != self.rmsmap.shape:
 raise IndexError("Noisemap has wrong shape")
 if noisemap.min()<0:
 raise ValueError("RMS noise cannot be negative")
 else:
 self.rmsmap = noisemap

 normalized_data = self.data_bgsubbed/self.rmsmap

 n1 = numpy.sqrt(2 * numpy.pi)
 prob = numpy.sort(numpy.ravel(numpy.exp(-0.5 * normalized_data**2)/n1))
 lengthprob = float(len(prob))
 compare = (alpha / C_n) * numpy.arange(lengthprob+1)[1:] / lengthprob
 # Find the last undercrossing, see, e.g., fig. 9 in Miller et al., AJ
 # 122, 3492 (2001). Searchsorted is not used because the array is not
 # sorted.
 try:
 index = (numpy.where(prob-compare < 0.)[0]).max()
 except ValueError:
 # Everything below threshold
 return containers.ExtractionResults()

 fdr_threshold = numpy.sqrt(-2.0 * numpy.log(n1 * prob[index]))
 # Default we require that all source pixels are above the threshold,
 # not only the peak pixel. This gives a better guarantee that indeed
 # the fraction of false positives is less than fdr_alpha in config.py.
 # See, e.g., Hopkins et al., AJ 123, 1086 (2002).
 if not anl:
 anl = fdr_threshold
 return self._pyse(fdr_threshold * self.rmsmap, anl * self.rmsmap,
 deblend_nthresh, force_beam)

[docs] def flux_at_pixel(self, x, y, numpix=1):
 """Return the background-subtracted flux at a certain position
 in the map"""

 # numpix is the number of pixels to look around the target.
 # e.g. numpix = 1 means a total of 9 pixels, 1 in each direction.
 return self.data_bgsubbed[y-numpix:y+numpix+1,
 x-numpix:x+numpix+1].max()

 @staticmethod
[docs] def box_slice_about_pixel(x,y,box_radius):
 """
 Returns a slice centred about (x,y), of width = 2*int(box_radius) + 1
 """
 ibr = int(box_radius)
 return (slice(x - ibr, x + ibr + 1),
 slice(y - ibr, y + ibr + 1))

[docs] def fit_to_point(self, x, y, boxsize, threshold, fixed):
 """Fit an elliptical Gaussian to a specified point on the image.

 The fit is carried on a square section of the image, of length
 boxsize & centred at pixel coordinates *x*, *y*. Any data
 below *threshold* * rmsmap is not used for fitting. If *fixed*
 is set to ``position``, then the pixel coordinates are fixed
 in the fit.

 Returns an instance of :class:`tkp.sourcefinder.extract.Detection`.
 """
 if ((
 # Recent NumPy
 hasattr(numpy.ma.core, "MaskedConstant") and
 isinstance(self.rmsmap, numpy.ma.core.MaskedConstant)
) or (
 # Old NumPy
 numpy.ma.is_masked(self.rmsmap[x, y])
)):
 logger.error("Background is masked: cannot fit")
 return None

 chunk = ImageData.box_slice_about_pixel(x, y, boxsize/2.0)
 if threshold is not None:
 # We'll mask out anything below threshold*self.rmsmap from the fit.
 labels, num = self.labels.setdefault(#Dictionary mapping threshold -> islands map
 threshold,
 ndimage.label(
 self.clip.setdefault(#Dictionary mapping threshold -> mask
 threshold,
 numpy.where(
 self.data_bgsubbed > threshold * self.rmsmap, 1, 0
)
)
)
)

 mylabel = labels[x, y]
 if mylabel == 0: # 'Background'
 raise ValueError("Fit region is below specified threshold, fit aborted.")
 mask = numpy.where(labels[chunk] == mylabel, 0, 1)
 fitme = numpy.ma.array(self.data_bgsubbed[chunk], mask=mask)
 if len(fitme.compressed()) < 1:
 raise IndexError("Fit region too close to edge or too small")
 else:
 fitme = self.data_bgsubbed[chunk]
 if fitme.size < 1:
 raise IndexError("Fit region too close to edge or too small")

 if not len(fitme.compressed()):
 logger.error("All data is masked: cannot fit")
 return None

 # set argument for fixed parameters based on input string
 if fixed == 'position':
 fixed = {'xbar': boxsize/2.0, 'ybar': boxsize/2.0}
 elif fixed == 'position+shape':
 fixed = {'xbar': boxsize/2.0, 'ybar': boxsize/2.0,
 'semimajor': self.beam[0],
 'semiminor': self.beam[1],
 'theta': self.beam[2]}
 elif fixed == None:
 fixed = {}
 else:
 raise TypeError("Unkown fixed parameter")

 if threshold is not None:
 threshold_at_pixel = threshold * self.rmsmap[x, y]
 else:
 threshold_at_pixel = None

 try:
 measurement, residuals = extract.source_profile_and_errors(
 fitme,
 threshold_at_pixel,
 self.rmsmap[x, y],
 self.beam,
 fixed=fixed
)
 except ValueError:
 # Fit failed to converge
 # Moments are not applicable when holding parameters fixed
 logger.error("Gaussian fit failed at %f, %f", x, y)
 return None

 try:
 assert(abs(measurement['xbar']) < boxsize)
 assert(abs(measurement['ybar']) < boxsize)
 except AssertionError:
 logger.warn('Fit falls outside of box.')

 measurement['xbar'] += x-boxsize/2.0
 measurement['ybar'] += y-boxsize/2.0
 measurement.sig = (fitme / self.rmsmap[chunk]).max()

 return extract.Detection(measurement, self)

[docs] def fit_fixed_positions(self, positions, boxsize, threshold=None,
 fixed='position+shape',
 ids=None):
 """
 Convenience function to fit a list of sources at the given positions

 This function wraps around fit_to_point().

 Args:
 positions (list): list of (RA, Dec) tuples. Positions to be fit,
 in decimal degrees.
 boxsize: See :py:func:`fit_to_point`
 threshold: as above.
 fixed: as above.
 ids (list): A list of identifiers. If not None, then must match
 the length and order of the ``requested_fits``. Any
 successfully fit positions will be returned in a tuple
 along with the matching id. As these are simply passed back to
 calling code they can be a string, tuple or whatever.

 In particular, boxsize is in pixel coordinates as in
 fit_to_point, not in sky coordinates.

 Returns:
 list: A list of successful fits.
 If ``ids`` is None, returns a single list of
 :class:`tkp.sourcefinder.extract.Detection` s.
 Otherwise, returns a tuple of two matched lists:
 ([detections], [matching_ids]).
 """

 if ids is not None:
 assert len(ids)==len(positions)

 successful_fits = []
 successful_ids = []
 for idx, posn in enumerate(positions):
 try:
 x, y, = self.wcs.s2p((posn[0], posn[1]))
 except RuntimeError, e:
 if (str(e).startswith("wcsp2s error: 8:") or
 str(e).startswith("wcsp2s error: 9:")):
 logger.warning("Input coordinates (%.2f, %.2f) invalid: ",
 posn[0], posn[1])
 else:
 raise
 else:
 try:
 fit_results = self.fit_to_point(x, y,
 boxsize=boxsize,
 threshold=threshold,
 fixed=fixed)
 if not fit_results:
 # We were unable to get a good fit
 continue
 if (fit_results.ra.error == float('inf') or
 fit_results.dec.error == float('inf')):
 logging.warning("position errors extend outside image")
 else:
 successful_fits.append(fit_results)
 if ids:
 successful_ids.append(ids[idx])

 except IndexError as e:
 logger.warning("Input pixel coordinates (%.2f, %.2f) "
 "could not be fit because: " + e.message,
 posn[0], posn[1])
 if ids:
 return successful_fits, successful_ids
 return successful_fits

[docs] def label_islands(self, detectionthresholdmap, analysisthresholdmap):
 """
 Return a lablled array of pixels for fitting.

 Args:

 detectionthresholdmap (numpy.ndarray):

 analysisthresholdmap (numpy.ndarray):

 Returns:

 list of valid islands (list of int)

 labelled islands (numpy.ndarray)
 """
 # If there is no usable data, we return an empty set of islands.
 if not len(self.rmsmap.compressed()):
 logging.warning("RMS map masked; sourcefinding skipped")
 return [], numpy.zeros(self.data_bgsubbed.shape, dtype=numpy.int)

 # At this point, we select all the data which is eligible for
 # sourcefitting. We are actually using three separate filters, which
 # exclude:
 #
 # 1. Anything which has been masked before we reach this point;
 # 2. Any pixels which fall below the analysis threshold at that pixel
 # position;
 # 3. Any pixels corresponding to a position where the RMS noise is
 # less than RMS_FILTER (default 0.001) times the median RMS across
 # the whole image.
 #
 # The third filter attempts to exclude those regions of the image
 # which contain no usable data; for example, the parts of the image
 # falling outside the circular region produced by awimager.
 RMS_FILTER = 0.001
 clipped_data = numpy.ma.where(
 (self.data_bgsubbed > analysisthresholdmap) &
 (self.rmsmap >= (RMS_FILTER * numpy.ma.median(self.rmsmap))),
 1, 0
).filled(fill_value=0)
 labelled_data, num_labels = ndimage.label(clipped_data, STRUCTURING_ELEMENT)

 labels_below_det_thr, labels_above_det_thr = [], []
 if num_labels > 0:
 # Select the labels of the islands above the analysis threshold
 # that have maximum values values above the detection threshold.
 # Like above we make sure not to select anything where either
 # the data or the noise map are masked.
 # We fill these pixels in above_det_thr with -1 to make sure
 # its labels will not be in labels_above_det_thr.
 # NB data_bgsubbed, and hence above_det_thr, is a masked array;
 # filled() sets all mased values equal to -1.
 above_det_thr = (
 self.data_bgsubbed - detectionthresholdmap
).filled(fill_value=-1)
 # Note that we avoid label 0 (the background).
 maximum_values = ndimage.maximum(
 above_det_thr, labelled_data, numpy.arange(1, num_labels + 1)
)

 # If there's only one island, ndimage.maximum will return a float,
 # rather than a list. The rest of this function assumes that it's
 # always a list, so we need to convert it.
 if isinstance(maximum_values, float):
 maximum_values = [maximum_values]

 # We'll filter out the insignificant islands
 for i, x in enumerate(maximum_values, 1):
 if x < 0:
 labels_below_det_thr.append(i)
 else:
 labels_above_det_thr.append(i)
 # Set to zero all labelled islands that are below det_thr:
 labelled_data = numpy.where(
 numpy.in1d(labelled_data.ravel(), labels_above_det_thr).reshape(labelled_data.shape),
 labelled_data, 0
)

 return labels_above_det_thr, labelled_data

 def _pyse(
 self, detectionthresholdmap, analysisthresholdmap,
 deblend_nthresh, force_beam, labelled_data=None, labels=[]
):
 """
 Run Python-based source extraction on this image.

 Args:

 detectionthresholdmap (numpy.ndarray):

 analysisthresholdmap (numpy.ndarray):

 deblend_nthresh (int): number of subthresholds for deblending. 0
 disables.

 force_beam (bool): force all extractions to have major/minor axes
 equal to the restoring beam

 labelled_data (numpy.ndarray): labelled island map (output of
 numpy.ndimage.label()). Will be calculated automatically if not
 provided.

 labels (list): list of labels in the island map to use for
 fitting.

 Returns:

 (..utility.containers.ExtractionResults):

 This is described in detail in the "Source Extraction System" document
 by John Swinbank, available from TKP svn.
 """
 # Map our chunks onto a list of islands.
 island_list = []
 if labelled_data is None:
 labels, labelled_data = self.label_islands(
 detectionthresholdmap, analysisthresholdmap
)

 # Get a bounding box for each island:
 # NB Slices ordered by label value (1...N,)
 # 'None' returned for missing label indices.
 slices = ndimage.find_objects(labelled_data)

 for label in labels:
 chunk = slices[label-1]
 analysis_threshold = (analysisthresholdmap[chunk] /
 self.rmsmap[chunk]).max()
 # In selected_data only the pixels with the "correct"
 # (see above) labels are retained. Other pixel values are
 # set to -(bignum).
 # In this way, disconnected pixels within (rectangular)
 # slices around islands (particularly the large ones) do
 # not affect the source measurements.
 selected_data = numpy.ma.where(
 labelled_data[chunk] == label,
 self.data_bgsubbed[chunk].data, -extract.BIGNUM
).filled(fill_value=-extract.BIGNUM)

 island_list.append(
 extract.Island(
 selected_data,
 self.rmsmap[chunk],
 chunk,
 analysis_threshold,
 detectionthresholdmap[chunk],
 self.beam,
 deblend_nthresh,
 DEBLEND_MINCONT,
 STRUCTURING_ELEMENT
)
)

 # If required, we can save the 'left overs' from the deblending and
 # fitting processes for later analysis. This needs setting up here:
 if self.residuals:
 self.residuals_from_gauss_fitting = numpy.zeros(self.data.shape)
 self.residuals_from_deblending = numpy.zeros(self.data.shape)
 for island in island_list:
 self.residuals_from_deblending[island.chunk] += (
 island.data.filled(fill_value=0.))

 # Deblend each of the islands to its consituent parts, if necessary
 if deblend_nthresh:
 deblended_list = map(lambda x: x.deblend(), island_list)
 #deblended_list = [x.deblend() for x in island_list]
 island_list = list(utils.flatten(deblended_list))

 # Iterate over the list of islands and measure the source in each,
 # appending it to the results list.
 results = containers.ExtractionResults()
 for island in island_list:
 if force_beam:
 fixed = {'semimajor': self.beam[0],
 'semiminor': self.beam[1],
 'theta': self.beam[2]}
 else:
 fixed = None
 fit_results = island.fit(fixed=fixed)
 if fit_results:
 measurement, residual = fit_results
 else:
 # Failed to fit; drop this island and go to the next.
 continue
 try:
 det = extract.Detection(measurement, self, chunk=island.chunk)
 if (det.ra.error == float('inf') or
 det.dec.error == float('inf')):
 logger.warn('Bad fit from blind extraction at pixel coords:'
 '%f %f - measurement discarded'
 '(increase fitting margin?)', det.x, det.y)
 else:
 results.append(det)

 if self.residuals:
 self.residuals_from_deblending[island.chunk] -= (
 island.data.filled(fill_value=0.))
 self.residuals_from_gauss_fitting[island.chunk] += residual
 except RuntimeError:
 logger.warn("Island not processed; unphysical?")
 raise

 def is_usable(det):
 # Check that both ends of each axis are usable; that is, that they
 # fall within an unmasked part of the image.
 # The axis will not likely fall exactly on a pixel number, so
 # check all the surroundings.
 def check_point(x, y):
 x = (numpy.floor(x), numpy.ceil(x))
 y = (numpy.floor(y), numpy.ceil(y))
 for position in itertools.product(x, y):
 try:
 if self.data.mask[position[0], position[1]]:
 # Point falls in mask
 return False
 except IndexError:
 # Point falls completely outside image
 return False
 # Point is ok
 return True
 for point in (
 (det.start_smaj_x, det.start_smaj_y),
 (det.start_smin_x, det.start_smin_y),
 (det.end_smaj_x, det.end_smaj_y),
 (det.end_smin_x, det.end_smin_y)
):
 if not check_point(*point):
 logger.debug("Unphysical source at pixel %f, %f" % (det.x.value, det.y.value))
 return False
 return True
 # Filter will return a list; ensure we return an ExtractionResults.
 return containers.ExtractionResults(filter(is_usable, results))

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/sourcefinder/fitting.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.sourcefinder.fitting

"""
Source fitting routines.
"""

import math
import numpy
import scipy.optimize
from .gaussian import gaussian
from .stats import indep_pixels
import utils

FIT_PARAMS = ('peak', 'xbar', 'ybar', 'semimajor', 'semiminor', 'theta')

[docs]def moments(data, beam, threshold=0):
 """Calculate source positional values using moments

 Args:

 data (numpy.ndarray): Actual 2D image data

 beam (3-tuple): beam (psf) information, with semi-major and
 semi-minor axes

 Returns:
 dict: peak, total, x barycenter, y barycenter, semimajor
 axis, semiminor axis, theta

 Raises:
 exceptions.ValueError: in case of NaN in input.

 Use the first moment of the distribution is the barycenter of an
 ellipse. The second moments are used to estimate the rotation angle
 and the length of the axes.
 """

 # Are we fitting a -ve or +ve Gaussian?
 if data.mean() >= 0:
 # The peak is always underestimated when you take the highest pixel.
 peak = data.max() * utils.fudge_max_pix(beam[0], beam[1], beam[2])
 else:
 peak = data.min()
 ratio = threshold / peak
 total = data.sum()
 x, y = numpy.indices(data.shape)
 xbar = float((x * data).sum()/total)
 ybar = float((y * data).sum()/total)
 xxbar = (x * x * data).sum()/total - xbar**2
 yybar = (y * y * data).sum()/total - ybar**2
 xybar = (x * y * data).sum()/total - xbar * ybar

 working1 = (xxbar + yybar) / 2.0
 working2 = math.sqrt(((xxbar - yybar)/2)**2 + xybar**2)
 beamsize = utils.calculate_beamsize(beam[0], beam[1])

 # Some problems arise with the sqrt of (working1-working2) when they are
 # equal, this happens with islands that have a thickness of only one pixel
 # in at least one dimension. Due to rounding errors this difference
 # becomes negative--->math domain error in sqrt.
 if len(data.nonzero()[0]) == 1:
 # This is the case when the island (or more likely subisland) has
 # a size of only one pixel.
 semiminor = numpy.sqrt(beamsize/numpy.pi)
 semimajor = numpy.sqrt(beamsize/numpy.pi)
 else:
 semimajor_tmp = (working1 + working2) * 2.0 * math.log(2.0)
 semiminor_tmp = (working1 - working2) * 2.0 * math.log(2.0)
 # ratio will be 0 for data that hasn't been selected according to a
 # threshold.
 if ratio != 0:
 # The corrections below for the semi-major and semi-minor axes are
 # to compensate for the underestimate of these quantities
 # due to the cutoff at the threshold.
 semimajor_tmp /= (1.0 + math.log(ratio) * ratio / (1.0 - ratio))
 semiminor_tmp /= (1.0 + math.log(ratio) * ratio / (1.0 - ratio))
 semimajor = math.sqrt(semimajor_tmp)
 semiminor = math.sqrt(semiminor_tmp)
 if semiminor == 0:
 # A semi-minor axis exactly zero gives all kinds of problems.
 # For instance wrt conversion to celestial coordinates.
 # This is a quick fix.
 semiminor = beamsize / (numpy.pi * semimajor)

 if (numpy.isnan(xbar) or numpy.isnan(ybar) or
 numpy.isnan(semimajor) or numpy.isnan(semiminor)):
 raise ValueError("Unable to estimate Gauss shape")

 # Theta is not affected by the cut-off at the threshold (see Spreeuw 2010,
 # page 45).
 if abs(semimajor - semiminor) < 0.01:
 # short circuit!
 theta = 0.
 else:
 theta = math.atan(2. * xybar / (xxbar - yybar))/2.
 if theta * xybar > 0.:
 if theta < 0.:
 theta += math.pi / 2.0
 else:
 theta -= math.pi / 2.0

 ## NB: a dict should give us a bit more flexibility about arguments;
 ## however, all those here are ***REQUIRED***.
 return {
 "peak": peak,
 "flux": total,
 "xbar": xbar,
 "ybar": ybar,
 "semimajor": semimajor,
 "semiminor": semiminor,
 "theta": theta
 }

[docs]def fitgaussian(pixels, params, fixed=None, maxfev=0):
 """Calculate source positional values by fitting a 2D Gaussian

 Args:
 pixels (numpy.ma.MaskedArray): Pixel values (with bad pixels masked)

 params (dict): initial fit parameters (possibly estimated
 using the moments() function, above)

 Kwargs:
 fixed (dict): parameters & their values to be kept frozen (ie, not
 fitted)

 maxfev (int): maximum number of calls to the error function

 Returns:
 dict: peak, total, x barycenter, y barycenter, semimajor,
 semiminor, theta (radians)

 Raises:
 exceptions.ValueError: In case of a bad fit.

 Perform a least squares fit to an elliptical Gaussian.

 If a dict called fixed is passed in, then parameters specified within the
 dict with the same names as fit_params (below) will be "locked" in the
 fitting process.
 """
 fixed = fixed or {}

 # Collect necessary values from parameter dict; only those which aren't
 # fixed.
 initial = []
 for param in FIT_PARAMS:
 if param not in fixed:
 if hasattr(params[param], "value"):
 initial.append(params[param].value)
 else:
 initial.append(params[param])

 def residuals(paramlist):
 """Error function to be used in chi-squared fitting

 :argument paramlist: fitting parameters
 :type paramlist: numpy.ndarray
 :argument fixed: parameters to be held frozen
 :type fixed: dict

 :returns: 2d-array of difference between estimated Gaussian function
 and the actual pixels
 """
 paramlist = list(paramlist)
 gaussian_args = []
 for param in FIT_PARAMS:
 if param in fixed:
 gaussian_args.append(fixed[param])
 else:
 gaussian_args.append(paramlist.pop(0))

 # gaussian() returns a function which takes arguments x, y and returns
 # a Gaussian with parameters gaussian_args evaluated at that point.
 g = gaussian(*gaussian_args)

 # The .compressed() below is essential so the Gaussian fit will not
 # take account of the masked values (=below threshold) at the edges
 # and corners of pixels (=(masked) array, so rectangular in shape).
 pixel_resids = numpy.ma.MaskedArray(
 data = numpy.fromfunction(g, pixels.shape) - pixels,
 mask = pixels.mask)
 return pixel_resids.compressed()

 # maxfev=0, the default, corresponds to 200*(N+1) (NB, not 100*(N+1) as
 # the scipy docs state!) function evaluations, where N is the number of
 # parameters in the solution.
 # Convergence tolerances xtol and ftol established by experiment on images
 # from Paul Hancock's simulations.
 soln, success = scipy.optimize.leastsq(
 residuals, initial, maxfev=maxfev, xtol=1e-4, ftol=1e-4
)

 if success > 4:
 raise ValueError("leastsq returned %d; bailing out" % (success,))

 # soln contains only the variable parameters; we need to merge the
 # contents of fixed into the soln list.
 # leastsq() returns either a numpy.float64 (if fitting a single value) or
 # a numpy.ndarray (if fitting multiple values); we need to turn that into
 # a list for the merger.
 try:
 # If an ndarray (or other iterable)
 soln = list(soln)
 except TypeError:
 soln = [soln]
 results = fixed.copy()
 for param in FIT_PARAMS:
 if param not in results:
 results[param] = soln.pop(0)

 if results['semiminor'] > results['semimajor']:
 # Swapped axis order is a perfectly valid fit, but inconvenient for
 # the rest of our codebase.
 results['semimajor'], results['semiminor'] = results['semiminor'], results['semimajor']
 results['theta'] += numpy.pi/2

 # Negative axes are a valid fit, since they are squared in the definition
 # of the Gaussian.
 results['semimajor'] = abs(results['semimajor'])
 results['semiminor'] = abs(results['semiminor'])

 return results

[docs]def goodness_of_fit(masked_residuals, noise, beam):
 """
 Calculates the goodness-of-fit values, `chisq` and `reduced_chisq`.

 .. Warning::
 We do not use the `standard chi-squared
 formula <https://en.wikipedia.org/wiki/Goodness_of_fit#Regression_analysis>`_
 for calculating these goodness-of-fit
 values, and should probably rename them in the next release.
 See below for details.

 These goodness-of-fit values are related to, but not quite the same as
 reduced chi-squared.
 Strictly speaking the reduced chi-squared is statistically
 invalid for a Gaussian model from the outset
 (see `arxiv:1012.3754 <http://arxiv.org/abs/1012.3754>`_).
 We attempt to provide a resolution-independent estimate of goodness-of-fit
 ('reduced chi-squared'), by using the same 'independent pixels' correction
 as employed when estimating RMS levels, to normalize the chi-squared value.
 However, as applied to the standard formula this will sometimes
 imply that we are fitting a fractional number of datapoints less than 1!
 As a result, it doesn't really make sense to try and apply the
 'degrees-of-freedom' correction, as this would likely result in a
 negative ``reduced_chisq`` value.
 (And besides, the 'degrees of freedom' concept is invalid for non-linear
 models.) Finally, note that when called from
 :func:`.source_profile_and_errors`, the noise-estimate at the peak-pixel
 is supplied, so will typically over-estimate the noise and
 hence under-estimate the chi-squared values.

 Args:
 masked_residuals(numpy.ma.MaskedArray): The pixel-residuals from the fit
 noise (float): An estimate of the noise level. Could also be set to
 a masked numpy array matching the data, for per-pixel noise
 estimates.
 beam (tuple): Beam parameters

 Returns:
 tuple: chisq, reduced_chisq

 """
 gauss_resid_normed = (masked_residuals / noise).compressed()
 chisq = numpy.sum(gauss_resid_normed*gauss_resid_normed)
 n_fitted_pix = len(masked_residuals.compressed().ravel())
 n_indep_pix = indep_pixels(n_fitted_pix, beam)
 reduced_chisq = chisq / n_indep_pix
 return chisq, reduced_chisq

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/monitoringlist.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.monitoringlist

"""
A collection of back end subroutines (mostly SQL queries).

This module contains the routines to deal with the monitoring
sources, provided by the user via the command line.
"""
import logging, sys

from tkp.db import execute as execute
from tkp.db.associations import _empty_temprunningcatalog as _del_tempruncat
from tkp.db.associations import (
 _update_1_to_1_runcat,
 ONE_TO_ONE_ASSOC_QUERY,
 _insert_1_to_1_runcat_flux,
 _update_1_to_1_runcat_flux)

logger = logging.getLogger(__name__)

[docs]def get_monitor_entries(dataset_id):
 """
 Returns the ``monitor`` entries relevant to this dataset.

 Args:
 dataset_id (int): Parent dataset.

 Returns:
 list of tuples [(monitor_id, ra, decl)]
 """

 query = """\
SELECT id
 ,ra
 ,decl
 FROM monitor
 WHERE dataset = %(dataset_id)s
"""
 qry_params = {'dataset_id': dataset_id}
 cursor = execute(query, qry_params)
 res = cursor.fetchall()
 return res

[docs]def associate_ms(image_id):
 """
 Associate the monitoring sources, i.e., their forced fits,
 of the current image with the ones in the running catalog.
 These associations are treated separately from the normal
 associations and there will only be 1-to-1 associations.

 The runcat-monitoring source pairs will be inserted in a
 temporary table.
 Of these, the runcat and runcat_flux tables are updated with
 the new datapoints if the (monitoring) source already existed,
 otherwise they are inserted as a new source.
 The source pair is appended to the light-curve table
 (assocxtrsource), with a type = 8 (for the first occurence)
 or type = 9 (for existing runcat sources).
 After all this, the temporary table is emptied again.
 """

 _del_tempruncat()

 _insert_tempruncat(image_id)

 _insert_1_to_1_assoc()
 _update_1_to_1_runcat()

 n_updated = _update_1_to_1_runcat_flux()
 if n_updated:
 logger.debug("Updated flux for %s monitor sources" % n_updated)
 n_inserted = _insert_1_to_1_runcat_flux()
 if n_inserted:
 logger.debug("Inserted new-band flux measurement for %s monitor sources"
 % n_inserted)

 _insert_new_runcat(image_id)
 _insert_new_runcat_flux(image_id)

 _insert_new_1_to_1_assoc(image_id)

 _update_monitor_runcats(image_id)

 _del_tempruncat()

[docs]def _insert_tempruncat(image_id):
 """
 Here the associations of forced fits of the monitoring sources
 and their runningcatalog counterparts are inserted into the
 temporary table.

 We follow the implementation of the normal association procedure,
 except that we don't need to match with a De Ruiter radius, since
 the counterpart pairs are from the same runningcatalog source.
 """

 # The query is as follows:
 # t0 searches for matches between the monitoring sources
 # (extract_type = 2) in the current image that have
 # a counterpart among the runningcatalog sources. This
 # matching is done by zone, decl, ra (corrected for alpha
 # infaltion towards the poles) and the dot product by
 # using the Cartesian coordinates. Note that the conical
 # distance is not determined by the De Ruiter radius,
 # since all these sources have identical positions.
 # t0 has a left outer join with the runningcatalog_flux table,
 # since the image might be of a new frequency band. In that case
 # all the rf.values are NULL.
 # The select then determines all the new (statistical) properties
 # for the runcat-monitoring pairs, which are inserted in the
 # tempruncat table.
 # Note that a first image does not have any matches,
 # but that is taken into account by the second part of
 # the associate_ms() function.
 query = """\
INSERT INTO temprunningcatalog
 (runcat
 ,xtrsrc
 ,distance_arcsec
 ,r
 ,dataset
 ,band
 ,stokes
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_ra_err
 ,avg_decl_err
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT t0.runcat_id
 ,t0.xtrsrc
 ,0 as distance_arcsec
 ,0 as r
 ,t0.dataset
 ,t0.band
 ,t0.stokes
 ,t0.datapoints
 ,t0.zone
 ,t0.wm_ra
 ,t0.wm_decl
 ,t0.wm_uncertainty_ew
 ,t0.wm_uncertainty_ns
 ,t0.avg_ra_err
 ,t0.avg_decl_err
 ,t0.avg_wra
 ,t0.avg_wdecl
 ,t0.avg_weight_ra
 ,t0.avg_weight_decl
 ,t0.x
 ,t0.y
 ,t0.z
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN 1
 ELSE rf.f_datapoints + 1
 END AS f_datapoints
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak
 ELSE (rf.f_datapoints * rf.avg_f_peak
 + t0.f_peak)
 / (rf.f_datapoints + 1)
 END AS avg_f_peak
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak
 ELSE (rf.f_datapoints * rf.avg_f_peak_sq
 + t0.f_peak * t0.f_peak)
 / (rf.f_datapoints + 1)
 END AS avg_f_peak_sq
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN 1 / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf.f_datapoints * rf.avg_f_peak_weight
 + 1 / (t0.f_peak_err * t0.f_peak_err))
 / (rf.f_datapoints + 1)
 END AS avg_f_peak_weight
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_peak
 + t0.f_peak / (t0.f_peak_err * t0.f_peak_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_peak
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_peak_sq
 + (t0.f_peak * t0.f_peak) / (t0.f_peak_err * t0.f_peak_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_peak_sq
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int
 ELSE (rf.f_datapoints * rf.avg_f_int
 + t0.f_int)
 / (rf.f_datapoints + 1)
 END AS avg_f_int
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int
 ELSE (rf.f_datapoints * rf.avg_f_int_sq
 + t0.f_int * t0.f_int)
 / (rf.f_datapoints + 1)
 END AS avg_f_int_sq
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN 1 / (t0.f_int_err * t0.f_int_err)
 ELSE (rf.f_datapoints * rf.avg_f_int_weight
 + 1 / (t0.f_int_err * t0.f_int_err))
 / (rf.f_datapoints + 1)
 END AS avg_f_int_weight
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_int
 + t0.f_int / (t0.f_int_err * t0.f_int_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_int
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_int_sq
 + (t0.f_int * t0.f_int) / (t0.f_int_err * t0.f_int_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_int_sq
 FROM (SELECT mon.runcat AS runcat_id
 ,x.id AS xtrsrc
 ,x.f_peak
 ,x.f_peak_err
 ,x.f_int
 ,x.f_int_err
 ,i.dataset
 ,i.band
 ,i.stokes
 ,r.datapoints + 1 AS datapoints
 ,r.zone
 ,r.wm_ra
 ,r.wm_decl
 ,r.wm_uncertainty_ew
 ,r.wm_uncertainty_ns
 ,r.avg_ra_err
 ,r.avg_decl_err
 ,r.avg_wra
 ,r.avg_wdecl
 ,r.avg_weight_ra
 ,r.avg_weight_decl
 ,r.x
 ,r.y
 ,r.z
 FROM monitor mon
 JOIN extractedsource x
 ON mon.id = x.ff_monitor
 JOIN runningcatalog r
 ON mon.runcat = r.id
 JOIN image i
 ON x.image = i.id
 WHERE mon.runcat IS NOT NULL
 AND x.image = %(image_id)s
 AND x.extract_type = 2
) t0
 LEFT OUTER JOIN runningcatalog_flux rf
 ON t0.runcat_id = rf.runcat
 AND t0.band = rf.band
 AND t0.stokes = rf.stokes
"""
 qry_params = {'image_id': image_id}
 cursor = execute(query, qry_params, commit=True)
 cnt = cursor.rowcount
 logger.debug("Inserted %s monitoring-runcat pairs in tempruncat" % cnt)

[docs]def _insert_runcat_flux():
 """Monitoring sources that were not yet fitted in this frequency band before,
 will be appended to it. Those have their first f_datapoint.
 """

 query = """\
INSERT INTO runningcatalog_flux
 (runcat
 ,band
 ,stokes
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT runcat
 ,band
 ,stokes
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
 FROM temprunningcatalog
 WHERE f_datapoints = 1
 """
 cursor = execute(query, commit=True)
 cnt = cursor.rowcount
 if cnt > 0:
 logger.debug("Inserted new-band fluxes for %s monitoring sources in runcat_flux" % cnt)

[docs]def _insert_new_runcat(image_id):
 """Insert the fits of the monitoring sources as new sources
 into the runningcatalog
 """

 query = """\
INSERT INTO runningcatalog
 (xtrsrc
 ,dataset
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,avg_ra_err
 ,avg_decl_err
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
 ,mon_src
)
 SELECT x.id AS xtrsrc
 ,i.dataset
 ,1 AS datapoints
 ,x.zone
 ,x.ra AS wm_ra
 ,x.decl AS wm_decl
 ,x.ra_err AS avg_ra_err
 ,x.decl_err AS avg_decl_err
 ,x.uncertainty_ew AS wm_uncertainty_ew
 ,x.uncertainty_ns AS wm_uncertainty_ns
 ,x.ra / (x.uncertainty_ew * x.uncertainty_ew) AS avg_wra
 ,x.decl / (x.uncertainty_ns * x.uncertainty_ns) AS avg_wdecl
 ,1 / (x.uncertainty_ew * x.uncertainty_ew) AS avg_weight_ra
 ,1 / (x.uncertainty_ns * x.uncertainty_ns) AS avg_weight_decl
 ,x.x
 ,x.y
 ,x.z
 ,TRUE
 FROM image i
 JOIN extractedsource x
 ON i.id = x.image
 JOIN monitor mon
 ON x.ff_monitor = mon.id
 WHERE i.id = %(image_id)s
 AND x.extract_type = 2
 AND mon.runcat IS NULL
"""
 cursor = execute(query, {'image_id': image_id}, commit=True)
 ins = cursor.rowcount
 if ins > 0:
 logger.debug("Added %s new monitoring sources to runningcatalog" % ins)

[docs]def _update_monitor_runcats(image_id):
 """
 Update ``runcat`` col of ``monitor`` table for newly extracted positions.
 """
 query ="""\
UPDATE monitor
 SET runcat = (SELECT rc.id
 FROM runningcatalog rc
 JOIN extractedsource ex
 ON rc.xtrsrc = ex.id
 WHERE monitor.runcat is NULL
 AND ex.image = %(image_id)s
 AND ex.ff_monitor = monitor.id
)
 WHERE EXISTS (SELECT rc.id
 FROM runningcatalog rc
 JOIN extractedsource ex
 ON rc.xtrsrc = ex.id
 WHERE monitor.runcat is NULL
 AND ex.image = %(image_id)s
 AND ex.ff_monitor = monitor.id
)

 """

 cursor = execute(query, {'image_id': image_id}, commit=True)
 up = cursor.rowcount
 logger.debug("Updated runcat cols for %s newly monitored sources" % up)

[docs]def _insert_new_runcat_flux(image_id):
 """Insert the fitted fluxes of the monitoring sources as new datapoints
 into the runningcatalog_flux.

 Extractedsources for which not a counterpart was found in the
 runningcatalog, i.e., those that do not have an entry in the
 tempruncat table (t0) will be added as a new source in the
 runningcatalog_flux table.

 """
 query = """\
INSERT INTO runningcatalog_flux
 (runcat
 ,band
 ,stokes
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT rc.id
 ,i.band
 ,i.stokes
 ,1 AS f_datapoints
 ,x.f_peak
 ,x.f_peak * x.f_peak
 ,1 / (x.f_peak_err * x.f_peak_err)
 ,x.f_peak / (x.f_peak_err * x.f_peak_err)
 ,x.f_peak * x.f_peak / (x.f_peak_err * x.f_peak_err)
 ,x.f_int
 ,x.f_int * x.f_int
 ,1 / (x.f_int_err * x.f_int_err)
 ,x.f_int / (x.f_int_err * x.f_int_err)
 ,x.f_int * x.f_int / (x.f_int_err * x.f_int_err)
 FROM image i
 JOIN extractedsource x
 ON i.id = x.image
 JOIN monitor mon
 ON x.ff_monitor = mon.id
 JOIN runningcatalog rc
 ON rc.xtrsrc = x.id
 WHERE i.id = %(image_id)s
 AND x.extract_type = 2
 AND mon.runcat IS NULL
"""
 cursor = execute(query, {'image_id': image_id}, commit=True)
 ins = cursor.rowcount
 if ins > 0:
 logger.debug("Added %s new monitoring fluxes to runningcatalog_flux" % ins)

[docs]def _insert_new_1_to_1_assoc(image_id):
 """
 The forced fits of the monitoring sources which are new
 are appended to the assocxtrsource (light-curve) table
 as a type = 8 datapoint.
 """

 query = """\
INSERT INTO assocxtrsource
 (runcat
 ,xtrsrc
 ,type
 ,distance_arcsec
 ,r
 ,v_int
 ,eta_int
 ,f_datapoints
)
 SELECT rc.id
 ,rc.xtrsrc
 ,8 AS type
 ,0
 ,0
 ,0 AS v_int
 ,0 AS eta_int
 ,1 as f_datapoints
 FROM runningcatalog rc
 JOIN extractedsource x
 ON rc.xtrsrc = x.id
 JOIN image i
 on x.image = i.id
 JOIN monitor mon
 ON x.ff_monitor = mon.id
 WHERE i.id = %(image_id)s
 AND mon.runcat IS NULL
 AND x.extract_type = 2
 """
 cursor = execute(query, {'image_id': image_id}, commit=True)
 cnt = cursor.rowcount
 if cnt > 0:
 logger.debug("Inserted %s new runcat-monitoring source pairs in assocxtrsource" % cnt)

[docs]def _insert_1_to_1_assoc():
 """
 The runcat-monitoring pairs are appended to the assocxtrsource
 (light-curve) table as a type = 9 datapoint.
 """
 cursor = execute(ONE_TO_ONE_ASSOC_QUERY, {'type': 9}, commit=True)
 cnt = cursor.rowcount
 logger.debug("Inserted %s runcat-monitoring source pairs in assocxtrsource" % cnt)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/database.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.database

import exceptions
import logging
import numpy
import tkp.config
from tkp.utility import substitute_inf

logger = logging.getLogger(__name__)

The version of the TKP DB schema which is assumed by the current tree.
Increment whenever the schema changes.
DB_VERSION = 34

[docs]class DBExceptions(object):
 """
 This provides an engine-agnostic wrapper around the exceptions that can
 the thrown by the database layer: we can refer to eg
 DBExcetions(engine).Error rather than <engine specific module>.Error.

 We handle both the PEP-0249 exceptions as provided by the DB engine, and
 add our own as necessary.
 """
 def __init__(self, engine):
 # RhombusError refers to unhandled source layout, See issue 4778:
 # https://support.astron.nl/lofar_issuetracker/issues/4778
 if engine == "monetdb":
 import monetdb.exceptions
 self.exceptions = monetdb.exceptions
 self.RhombusError = self.exceptions.OperationalError
 elif engine == "postgresql":
 import psycopg2
 self.exceptions = psycopg2
 self.RhombusError = self.exceptions.IntegrityError

 def __getattr__(self, attrname):
 obj = getattr(self.exceptions, attrname)
 # Weed the cluttered psycopg2 namespace: only return things that
 # really are valid database errors.
 if isinstance(obj, type) and issubclass(obj, exceptions.StandardError):
 return obj
 else:
 raise AttributeError(attrname)

[docs]def sanitize_db_inputs(params):
 """
 Replace values in params with alternatives suitable for database insertion.

 That includes:

 * Convert numpy.floating types into Python floats;
 * Convert infs into the string "Infinity".

 Args:
 params (dict/list/tuple): (Potentially) dirty database inputs

 Returns:
 cleaned (dict/list/tuple): Sanitized database inputs
 """
 def sanitize(val):
 val = substitute_inf(val)
 if isinstance(val, numpy.floating):
 val = float(val)
 return val

 # According to the DB-API, params could be a dict-alike (ie, has key-value
 # pairs) or a list-alike (an ordered sequence).
 if hasattr(params, "iteritems"):
 cleaned = {k: sanitize(v) for k, v in params.iteritems()}
 else:
 cleaned = [sanitize(v) for v in params]

 return cleaned

[docs]class Database(object):
 """
 An object representing a database connection.
 """
 _connection = None
 _configured = False

 # this makes this class a singleton
 _instance = None
 def __new__(cls, *args, **kwargs):
 if not cls._instance:
 cls._instance = object.__new__(cls)
 return cls._instance

 def __init__(self, **kwargs):
 if self._configured:
 if kwargs: logger.warning("Not configuring pre-configured database")
 return
 elif not kwargs:
 kwargs = tkp.config.get_database_config()

 self.engine = kwargs['engine']
 self.database = kwargs['database']
 self.user = kwargs['user']
 self.password = kwargs['password']
 self.host = kwargs['host']
 self.port = kwargs['port']
 logger.info("Database config: %s://%s@%s:%s/%s" % (self.engine,
 self.user,
 self.host,
 self.port,
 self.database))
 self._configured = True
 # Provide placeholders for engine-specific Exception classes
 self.exceptions = DBExceptions(self.engine)

[docs] def connect(self):
 """
 connect to the configured database
 """
 logger.info("connecting to database...")

 kwargs = {}
 if self.user:
 kwargs['user'] = self.user
 if self.host:
 kwargs['host'] = self.host
 if self.database:
 kwargs['database'] = self.database
 if self.password:
 kwargs['password'] = self.password
 if self.port:
 kwargs['port'] = int(self.port)

 # During pipeline operation, we force autocommit to off (which should
 # be the default according to the DB-API specs). See #4885.
 if self.engine == 'monetdb':
 import monetdb.sql
 kwargs['autocommit'] = False
 self._connection = monetdb.sql.connect(**kwargs)
 elif self.engine == 'postgresql':
 import psycopg2
 self._connection = psycopg2.connect(**kwargs)
 self._connection.autocommit = False
 else:
 msg = "engine %s not supported " % self.engine
 logger.error(msg)
 raise NotImplementedError(msg)

 # Check that our database revision matches that expected by the
 # codebase.
 cursor = self.connection.cursor()
 cursor.execute("SELECT value FROM version WHERE name='revision'")
 schema_version = cursor.fetchone()[0]
 if schema_version != DB_VERSION:
 error = ("Database version incompatibility (needed %d, got %d)" %
 (DB_VERSION, schema_version))
 logger.error(error)
 self._connection.close()
 self._connection = None
 raise Exception(error)

 # I don't like this but it is used in some parts of TKP
 self.cursor = self._connection.cursor()

 logger.info("connected to: %s://%s@%s:%s/%s" % (self.engine,
 self.user,
 self.host,
 self.port,
 self.database))

 @property
 def connection(self):
 """
 The database connection, will be created if it doesn't exists.

 This is a property to be backwards compatible with the rest of TKP.

 :return: a database connection
 """
 if not self._connection:
 self.connect()

 # I don't like this but it is used in some parts of TKP
 self.cursor = self._connection.cursor()

 return self._connection

[docs] def close(self):
 """
 close the connection if open
 """
 if self._connection:
 self._connection.close()
 self._connection = None

[docs] def vacuum(self, table):
 """
 Force a vacuum on a table, which removes dead rows. (Postgres only)

 Normally the auto vacuum process does this for you, but in some cases
 (for example when the table receives many insert and deletes) manual
 vacuuming is necessary for performance reasons.

 args:
 table: name of the table in the database you want to vacuum
 """

 if self.engine != "postgresql":
 return

 from psycopg2.extensions import (ISOLATION_LEVEL_AUTOCOMMIT,
 ISOLATION_LEVEL_READ_COMMITTED)

 # disable autocommit since can't vacuum in transaction
 self.connection.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)
 cursor = self.connection.cursor()
 cursor.execute("VACUUM ANALYZE %s" % table)
 # reset settings
 self.connection.set_isolation_level(ISOLATION_LEVEL_READ_COMMITTED)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/dump.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.dump

"""
Dump database schema and content
"""
import logging
import subprocess
import tempfile
import os

logger = logging.getLogger(__name__)

[docs]def dump_db(engine, hostname, port, dbname, dbuser, dbpass, output):
 """
 Dumps a database

 Args:
 engine: the name of the database system (either monetdb or postgresql)
 hostname: the hostname of the database
 port: the port of the database server
 dbname: the database name to be dumped
 dbuser: the user authorised to do the dump
 dbpass: the pw for the user
 output: the output file to which the dump is written
 """
 if engine == "monetdb":
 return dump_monetdb(hostname, port, dbname, dbuser, dbpass, output)
 elif engine == "postgresql":
 return dump_pg(hostname, port, dbname, dbuser, dbpass, output)
 else:
 raise NotImplementedError("Not able to dump %s" % (engine,))

[docs]def dump_monetdb(hostname, port, dbname, dbuser, dbpass, output_filename):
 """
 Dumps a MonetDB database in specified output file
 """
 mclient_executable = "mclient"

 with tempfile.NamedTemporaryFile() as dotmonetdb, \
 open(output_filename, 'w') as output_file:

 # NB we need to write *both* user and password into the dotmonetdb
 # file: writing just the password will fail.
 dotmonetdb.write("user=%s\n" % (dbuser,))
 dotmonetdb.write("password=%s\n" % (dbpass,))
 dotmonetdb.flush()

 try:
 env = os.environ
 env["DOTMONETDBFILE"]= dotmonetdb.name
 subprocess.check_call(
 [
 mclient_executable,
 "-h", hostname,
 "-p", str(port),
 "-d", dbname,
 "--dump"
],
 env=env,
 stdout=output_file
)
 except Exception, e:
 logger.error("Failed to dump: %s" % (e,))
 raise

[docs]def dump_pg(hostname, port, dbname, dbuser, dbpass, output_filename):
 """
 Dumps a PostgreSQL database in specified output file
 """
 pg_dump_executable = "pg_dump"

 try:
 env = os.environ
 env["PGPASSWORD"]= dbpass
 subprocess.check_call(
 [
 pg_dump_executable,
 "-h", hostname,
 "-p", str(port),
 "-U", dbuser,
 "-f", output_filename,
 dbname
],
 env=env
)
 except Exception, e:
 logger.error("Failed to dump: %s" % (e,))
 raise

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/orm.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.orm

"""
This module contains lightweight container objects that corresponds
to a dataset, image or extracted source in the database; it is actually a
mini Object Relation Mapper (ORM). The correspondence between the object
and table row is matched through the private _id attributes.

Each dataset contains several database Images; each Image contains a
number of ExtractedSources. The database Images correspond to the
images table in the database, *not* to sourcefinder images or actual
image data files on disk (this distinction is important; while there
are certainly parts in common, several are not).

The current setup is done in large part to keep the database and
sourcefinder (and other parts of the TKP package) separate; tightly
integrated database tables/sourcefinder images/disk files make it more
difficult to improve the code or distribute parts separately.

Usage
=====

In practice, a DataSet object is created, and separate Images are
created referencing that DataSet() instance; ids are automatically
assigned where necessary (i.e., on creation of a new entry (row) in
the database).

Objects can also be created using an existing id; data is then taken
from the corresponding table row in the database.

Creating new objects
====================

The following code is an usage example, but should not be used as a
doc test (since the database value can differ, and thus the test would
fail)::

 # database sets up and holds the connection to the actual database
 >>> database = tkp.db.database.Database()

 # Each object type takes a data dictionary on creation, which for newly objects
 # has some required keys (& values). For a DataSet, this is only 'description';
 # for an Image, the keys are 'freq_eff', 'freq_bw_', 'taustart_ts',
 # 'tau_time' & 'url'
 # The required values are stored in the the REQUIRED attribute
 >>> dataset = DataSet(data={'description': 'a dataset'}, database=database)

 # Here, dataset indirectly holds the database connection:
 >>> dataset.database
 DataBase(host=heastro1, name=trap, user=trap, ...)
 >>> image1 = Image(data={'freq_eff': '80e6', 'freq_bw': 1e6, \
 'taustart_ts': datetime(2011, 5, 1, 0, 0, 0), 'tau_time': 1800., 'url': '/'}, dataset=dataset) # initialize with defaults
 # note the dataset kwarg, which holds the database connection
 >>> image1.tau_time
 1800.
 >>> image1.taustart_ts
 datetime.datetime(2011, 5, 1, 0, 0, 0)
 >>> image2 = Image(data={'freq_eff': '80e6', 'freq_bw': 1e6, \
 'taustart_ts': datetime(2011, 5, 1, 0, 1, 0), 'tau_time': 1500.,'url': '/'}, dataset=dataset)
 >>> image2.tau_time
 1500
 >>> image2.taustart_ts
 datetime.datetime(2011, 5, 1, 0, 1, 0)
 # Images created with a dataset object, are automatically added to that dataset:
 >>> dataset.images
 set([<tkp.database.dataset.Image object at 0x26fb6d0>, <tkp.database.dataset.Image object at 0x26fb790>])

Updating objects
================

To update objects, use the update() method.

This method does two things, in the following order:

1. it updates from the database to the object: if there have been
changes in the database, the object will reflect that after executing
update()

2. then, it updates the object (and the database) with values supplied
by the user. The latter values are optional; no supplied values simply
means there aren't any updates.

 >>> image2.update(tau_time=2500) # updates the database as well
 >>> image2.tau_time
 2500
 >>> database.cursor.execute("SELECT tau_time FROM images WHERE imageid=%s" % \
 (image2.id,))
 >>> database.cursors.fetchone()[0]
 2500
 # Manually update the database
 >>> database.cursor.execute("UPDATE images SET tau_time=2000.0 imageid=%s" % \
 (image2.id,))
 >>> image2.tau_time # not updated yet!
 2500
 >>> image2.update()
 >>> image2.tau_time
 2000

Assigning objects to a table row on creation
==

It is also possible to create a DataSet, Image or ExtractedSource instance from the
database, using the ``id`` in the initializer::

 >>> dataset2 = DataSet(id=dataset.id, database=database)
 >>> image3 = Image(imageid=image2.id, database=database)
 >>> image3.tau_time
 2000

If an ``id`` is supplied, ``data`` is ignored.
"""

import logging
from tkp.db.generic import columns_from_table, set_columns_for_table
from tkp.db.general import (insert_dataset, insert_image,
 insert_extracted_sources, lightcurve)
from tkp.db.associations import associate_extracted_sources
import tkp.db
import tkp.db.quality
from tkp.db.database import Database

logger = logging.getLogger(__name__)

[docs]class DBObject(object):
 """Generic mini-ORM object

 Derived objects will need to implement __init__, which for
 practical reasons is split up in __init__ and _init_data: the
 latter is called at the end __init__, so a derived __init__ would
 have super(Derived, self).__init__() at the start and
 super(Derived, self)._init_data() at the end.

 __init__ takes care of setting the id, the supplied `data` dictionary
 and the connection to the database.

 _init_data sets the actual data either from the database (in case
 of a supplied id) or from the `data` dictionary.
 """

 def __init__(self, data=None, database=None, id=None):
 """Basic initialization.

 Inherited classes need to implement any actual database action,
 by calling self._init_data() at the end of their __init__
 method.
 """
 # Call the id property to set the _id attribute
 self._id = id
 self._data = {} if data is None else data.copy()
 self.database = database

 def _init_data(self):
 """Set up the data, either by creating a new DBOject or
 updating it from the database using the id

 This method should only be called from __init__(), probably at the end.

 Note that this does prevent proper (multi) inheritance,
 because it would get called several times then.

 Raises:

 AttributeError if a required data keyword is missing.

 """
 if self._id is not None:
 # object created using an existing table row
 self.update()
 else:
 # Verify required data keys
 for key in self.REQUIRED:
 if key not in self._data:
 raise AttributeError("missing required data key: %s" % key)
 self.id

[docs] def __getattr__(self, name):
 """Obtain the 'name' attribute, where 'name' is a database column name"""
 #DEVELOPERS NOTE: if this property fails for some reason, python will
 #ignore it, and continue using the __getattr__ method. This is very
 #confusing. So if for any reason you are getting 'attribute not found'
 #errors while you don't expect it, I suggest temporarily disabling the
 #__getattr__ method until you located the problem.

 if name in self._data:
 return self._data[name]
 else:
 raise AttributeError("attribute '%s' not found" % name)

 @property
 def id(self):
 """Add or obtain an id to/from the table

 The id is generated if self._id does not exist, effectively
 creating a new row in the database.

 Several containers have their specific SQL function to create
 a new object, so this property will need to overridden.

 """
 if self._id is None:
 query = ("INSERT INTO " + self.TABLE + " (" +
 ", ".join(self._data.iterkeys()) + ") VALUES (" +
 ", ".join(["%s"] * len(self._data)) + ")"
)
 if self.database.engine == "postgresql":
 query = query + "RETURNING ID"
 values = tuple(self._data.itervalues())
 cursor = self.database.cursor
 try:
 # Insert a default source
 cursor.execute(query, values)
 if not self.database.connection.autocommit:
 self.database.connection.commit()
 if self.database.engine == "monetdb":
 self._id = cursor.lastrowid
 elif self.database.engine == "postgresql":
 self._id = cursor.fetchone()[0]
 else:
 raise self.database.connection.Error(
 "Database engine not implemented in ORM.")
 except self.database.connection.Error:
 logger.warn("insertion into database failed: %s",
 (query % values))
 raise
 except Exception as e:
 logging.error("ORM failed: %s" % str(e))
 raise
 return self._id

[docs] def update(self, **kwargs):
 """Update attributes from database, and set database values to
 kwargs when provided

 This method performs two functions, the first always and the
 second optionally after the first:

 - it updates the attributes from the database. That is, it
 makes sure the Python instance is synchronized with the
 database.

 - (optional): it sets the column values in the database to
 the values provided through kwargs, for the associated
 database row. Attributes for the instance are of course
 also set to these values. Any kwargs that do not
 correspond to a column name are simply ignored.

 This function therefore first updates the instance from the
 database, and then optionally the database from the instance
 (with the provided keyword arguments).
 """

 self._sync_with_database()
 self._set_data(**kwargs)

 def _sync_with_database(self):
 """Update object attributes from the database"""
 results = columns_from_table(self.TABLE, keywords=None,
 where={self.ID: self._id})
 # Shallow copy, but that's ok: all database values are
 # immutable (including datetime objects)
 if results:
 self._data = results[0].copy()
 else:
 self._data = {}

 def _set_data(self, **kwargs):
 """Update the database with the supplied **kwargs.

 Supplied keywords that do not exist in the database will lead
 to a database error.
 """

 if not kwargs:
 return
 set_columns_for_table(self.TABLE, data=kwargs,
 where={self.ID: self._id})
 self._data.update(kwargs)

[docs]class DataSet(DBObject):
 """Class corresponding to the dataset table in the database"""

 TABLE = 'dataset'
 ID = 'id'
 REQUIRED = ('description',)

 def __init__(self, data=None, database=None, id=None):
 """If id is supplied, the data and image arguments are ignored."""
 super(DataSet, self).__init__(
 data=data, database=database, id=id)
 self.images = set()
 if not self.database:
 self.database = Database()
 self._init_data()

 def __str__(self):
 return 'DataSet: "%s". Database ID: %s, %d images.' % (
 self.description, str(self.id), len(self.images))

 # Inserting datasets is handled a little different than normal inserts
 # (We make use of the SQL function insertDataset)
 @property
 def id(self):
 """Add or obtain an id to/from the table

 This uses the SQL function insertDataset().
 """
 if self._id is None:
 try:
 self._id = insert_dataset(self._data['description'])
 except Exception as e:
 logger.error("ORM: error inserting dataset, %s: %s" % (type(e).__name__, str(e)))
 raise
 return self._id

[docs] def update_images(self):
 """Renew the set of images by getting the images for this
 dataset from the database. Implemented separately from update(),
 since normally this would be too much overhead"""
 query = "SELECT id FROM image WHERE dataset = %s ORDER BY id" % self._id
 cursor = tkp.db.execute(query)
 result = cursor.fetchall()
 image_ids = [row[0] for row in result]
 self.images = [Image(database=self.database, id=id) for id in image_ids]

[docs] def runcat_entries(self):
 """
 Returns:
 list: a list of dictionarys representing rows in runningcatalog,
 for all sources belonging to this dataset

 Column 'id' is returned with the key 'runcat'

 Currently only returns 3 columns:
 [{'runcat,'xtrsrc','datapoints'}]
 """
 return columns_from_table('runningcatalog',
 keywords=['id', 'xtrsrc', 'datapoints'],
 alias={'id':'runcat'},
 where={'dataset':self.id})

[docs] def frequency_bands(self):
 """Return a list of distinct bands present in the dataset."""
 query = """\
 SELECT DISTINCT(band)
 FROM image
 WHERE dataset = %s
 """
 self.database.cursor.execute(query, (self.id,))
 bands = zip(*self.database.cursor.fetchall())[0]
 return bands

[docs]class Image(DBObject):
 """Class corresponding to the images table in the database"""

 TABLE = 'image'
 ID = 'id'
 REQUIRED = ('dataset', 'tau_time', 'freq_eff', 'freq_bw', 'taustart_ts',
 'beam_smaj_pix', 'beam_smin_pix', 'beam_pa_rad',
 'deltax', 'deltay',
 'url', 'centre_ra', 'centre_decl', 'xtr_radius', 'rms_qc')

 def __init__(self, data=None, dataset=None, database=None, id=None):
 """If id is supplied, the data and image arguments are ignored."""
 super(Image, self).__init__(data=data, database=database, id=id)
 # Special part to deal when a DataSet() is supplied
 self.dataset = dataset
 self.rejected = False
 if self.dataset:
 if self.dataset.database and not self.database:
 self.database = self.dataset.database
 self.dataset.images.add(self)
 self._data.setdefault('dataset', self.dataset.id)
 self.sources = set()
 if not self.database:
 self.database = Database()
 self._init_data()
 if not self.dataset:
 self.dataset = DataSet(id=self._data['dataset'], database=self.database)

 self.update_rejected()

 # Inserting images is handled a little different than normal inserts
 # -- We call an SQL function 'insertImage' which takes care of
 # assigning a new image id.
 @property
 def id(self):
 """Add or obtain an id to/from the table

 This uses the SQL function insertImage()
 """

 if self._id is None:
 try:
 #if 'bsmaj' not in self._data:
 # self._data['bsmaj'] = None
 # self._data['bsmin'] = None
 # self._data['bpa'] = None
 # self._data['deltax'] = None
 # self._data['deltay'] = None
 # Insert a default image
 self._id = insert_image(self.dataset.id,
 self._data['freq_eff'], self._data['freq_bw'],
 self._data['taustart_ts'], self._data['tau_time'],
 self._data['beam_smaj_pix'], self._data['beam_smin_pix'],
 self._data['beam_pa_rad'],
 self._data['deltax'],
 self._data['deltay'],
 self._data['url'],
 self._data['centre_ra'], #Degrees J2000
 self._data['centre_decl'], #Degrees J2000
 self._data['xtr_radius'], #Degrees
 self._data['rms_qc'],
 self._data.get('rms_min',None),
 self._data.get('rms_max',None),
 self._data.get('detection_thresh',None),
 self._data.get('analysis_thresh',None),
)
 except Exception as e:
 logger.error("ORM: error inserting image, %s: %s" %
 (type(e).__name__, str(e)))
 raise
 return self._id

[docs] def update_rejected(self):
 """Update self.rejected with the rejected status. Will be false
 if not rejected, will be a list of reject descriptions if rejected"""
 self.rejected = tkp.db.quality.isrejected(self.id)

[docs] def update_sources(self):
 """Renew the set of sources by getting the sources for this
 image from the database

 This method is separately implemented, because it's not always necessary
 and potentially (for an image with dozens or more sources) time & memory
 consuming.
 """

 query = "SELECT id FROM extractedsource WHERE image = %s"
 try:
 self.database.cursor.execute(query, (self._id,))
 results = self.database.cursor.fetchall()
 except self.database.connection.Error, e:
 query = query % self._id
 logger.warn("database failed on query: %s", query)
 raise
 sources = set()
 for result in results:
 sources.add(ExtractedSource(database=self.database, id=result[0]))
 self.sources = sources

[docs] def insert_extracted_sources(self, results, extract='blind'):
 """Insert a list of sources

 Args:

 results (list): list of
 utility.containers.ExtractionResult objects (as
 returned from
 sourcefinder.image.ImageData().extract()), or a list
 of data tuples with the source information as follows:
 (ra, dec,
 ra_fit_err, dec_fit_err,
 peak, peak_err,
 flux, flux_err,
 significance level,
 beam major width (as), beam minor width(as),
 beam parallactic angle
 ew_sys_err, ns_sys_err,
 error_radius).
 extract (str):'blind', 'ff_nd' or 'ff_ms'
 (see db.general.insert_extracted_sources)
 """
 #To do: Figure out a saner method of passing the results around
 # (Namedtuple, for starters?)

 insert_extracted_sources(self._id, results=results, extract_type=extract)

[docs] def associate_extracted_sources(self, deRuiter_r, new_source_sigma_margin):
 """Associate sources from the last images with previously
 extracted sources within the same dataset

 Args:

 deRuiter_r (float): The De Ruiter radius for source
 association. The default value is set through the
 tkp.config module
 """
 associate_extracted_sources(self._id, deRuiter_r,
 new_source_sigma_margin=new_source_sigma_margin)

[docs]class ExtractedSource(DBObject):
 """Class corresponding to the extractedsource table in the database"""

 TABLE = 'extractedsource'
 ID = 'id'
 REQUIRED = ('image', 'zone',
 'ra', 'decl', 'ra_err', 'decl_err',
 'uncertainty_ew', 'uncertainty_ns',
 'ra_fit_err', 'decl_fit_err', 'ew_sys_err', 'ns_sys_err',
 'error_radius',
 'x', 'y', 'z',
 'racosdecl', 'det_sigma')

 def __init__(self, data=None, image=None, database=None, id=None):
 """If id is supplied, the data and image arguments are ignored."""
 super(ExtractedSource, self).__init__(
 data=data, database=database, id=id)
 # Special part to deal when an Image() is supplied
 self.image = image
 if self.image:
 if self.image.dataset.database and not self.database:
 self.database = self.image.dataset.database
 self.image.sources.add(self)
 self._data.setdefault('image', self.image.id)
 if not self.database:
 raise ValueError(
 "can't create ExtractedSource object without a Database() object")
 self._init_data()

[docs] def lightcurve(self):
 """Obtain the complete light curve (within the current dataset)
 for this source.

 Returns:
 list: list of 5-tuples, each tuple being:
 - observation start time as a datetime.datetime object
 - integration time (float)
 - integrated flux (float)
 - integrated flux error (float)
 - database ID of this particular source
 """

 return lightcurve(self._id)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/telescope/lofar/antennaarrays.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.telescope.lofar.antennaarrays

"""
This module contains numbers of phsysicial properties of the LOFAR array.

For performance reasons these distances are precomputed. One can recompute
them using :func:`parse_antennafile()`, :func:`shortest_distances()` and a
``AntennaArrays.conf`` file from
``LOFAR/MAC/Deployment/data/StaticMetaData/AntennaArrays`` in the lofar system
software source tree.
"""
import math

core_dipole_distances = {
 "LBA":
 [2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 3.60, 3.34, 3.26, 3.49,
 3.19, 3.19, 3.51, 3.42, 3.18, 3.59, 3.66, 4.32, 3.23, 3.23, 3.38,
 3.49, 3.19, 3.89, 3.40, 3.51, 3.49, 4.12, 3.82, 3.13, 3.13, 2.99,
 2.99, 3.32, 3.38, 3.36, 3.36, 4.75, 2.79, 2.79, 3.40, 4.15, 3.98,
 3.98, 4.49, 27.04, 27.48, 3.07, 3.07, 6.27, 4.14, 4.39, 5.36, 5.03,
 7.17, 4.92, 5.01, 4.59, 8.19, 6.20, 6.27, 6.27, 6.00, 4.14, 4.39,
 7.84, 8.14, 7.38, 7.17, 9.36, 5.80, 9.83, 7.08, 7.34, 7.40, 6.00,
 10.25, 9.37, 8.83, 8.64, 5.27, 7.66, 8.23, 8.23, 6.72, 5.80, 6.28,
 11.06, 7.40, 10.80, 10.81, 8.64, 5.27, 7.66, 9.06],
 "LBA_OUTER":
 [3.07, 3.07, 6.27, 4.14, 4.39, 5.36, 5.03, 7.17, 4.92, 5.01, 4.59,
 8.19, 6.20, 6.27, 6.27, 6.00, 4.14, 4.39, 7.84, 8.14, 7.38, 7.17,
 9.36, 5.80, 9.83, 7.08, 7.34, 7.40, 6.00, 10.25, 9.37, 8.83, 8.64,
 5.27, 7.66, 8.23, 8.23, 6.72, 5.80, 6.28, 11.06, 7.40, 10.80, 10.81,
 8.64, 5.27, 7.66, 9.06],
 "LBA_INNER":
 [2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 3.60, 3.34, 3.26, 3.49,
 3.19, 3.19, 3.51, 3.42, 3.18, 3.59, 3.66, 4.32, 3.23, 3.23, 3.38,
 3.49, 3.19, 3.89, 3.40, 3.51, 3.49, 4.12, 3.82, 3.13, 3.13, 2.99,
 2.99, 3.32, 3.38, 3.36, 3.36, 4.75, 2.79, 2.79, 3.40, 4.15, 3.98,
 3.98, 4.49, 27.04, 27.48],
 "LBA_SPARSE0":
 [2.55, 3.07, 2.55, 4.14, 2.55, 5.36, 2.55, 7.17, 3.34, 5.01, 3.49,
 8.19, 3.19, 6.27, 3.42, 6.00, 3.59, 4.39, 4.32, 8.14, 3.23, 7.17,
 3.49, 5.80, 3.89, 7.08, 3.51, 7.40, 4.12, 10.25, 3.13, 8.83, 2.99,
 5.27, 3.32, 8.23, 3.36, 6.72, 4.75, 6.28, 2.79, 7.40, 4.15, 10.81,
 3.98, 5.27, 27.04, 9.06],
 "LBA_SPARSE1":
 [3.07, 2.55, 6.27, 2.55, 4.39, 2.55, 5.03, 3.60, 4.92, 3.26, 4.59,
 3.19, 6.20, 3.51, 6.27, 3.18, 4.14, 3.66, 7.84, 3.23, 7.38, 3.38,
 9.36, 3.19, 9.83, 3.40, 7.34, 3.49, 6.00, 3.82, 9.37, 3.13, 8.64,
 2.99, 7.66, 3.38, 8.23, 3.36, 5.80, 2.79, 11.06, 3.40, 10.80, 3.98,
 8.64, 4.49, 7.66, 27.48],
 "LBA_X":
 [2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 3.60, 3.34, 3.26, 3.49,
 3.19, 3.19, 3.51, 3.42, 3.18, 3.59, 3.66, 4.32, 3.23, 3.23, 3.38,
 3.49, 3.19, 3.89, 3.40, 3.51, 3.49, 4.12, 3.82, 3.13, 3.13, 2.99,
 2.99, 3.32, 3.38, 3.36, 3.36, 4.75, 2.79, 2.79, 3.40, 4.15, 3.98,
 3.98, 4.49, 27.04, 27.48],
 "LBA_Y":
 [3.07, 3.07, 6.27, 4.14, 4.39, 5.36, 5.03, 7.17, 4.92, 5.01, 4.59,
 8.19, 6.20, 6.27, 6.27, 6.00, 4.14, 4.39, 7.84, 8.14, 7.38, 7.17,
 9.36, 5.80, 9.83, 7.08, 7.34, 7.40, 6.00, 10.25, 9.37, 8.83, 8.64,
 5.27, 7.66, 8.23, 8.23, 6.72, 5.80, 6.28, 11.06, 7.40, 10.80, 10.81,
 8.64, 5.27, 7.66, 9.06],
 "HBA":
 [34.16, 35.79, 28.15, 29.20, 31.09, 33.66, 22.88, 23.04, 24.32, 26.55,
 29.52, 33.04, 17.75, 17.96, 19.57, 22.29, 25.76, 29.72, 12.93, 15.09,
 18.48, 22.54, 11.20, 15.46, 17.67, 15.05, 24.24, 21.95, 19.90, 19.06,
 29.92, 29.04, 26.55, 24.88, 24.21, 23.76, 34.99, 33.46, 31.31, 29.91,
 29.36, 27.67, 38.06, 36.19, 34.98, 34.51, 41.13, 40.07],
 "HBA0":
 [0.79, 1.36, 1.75, 0.90, 1.51, 2.13, 3.34, 1.95, 1.56, 1.15, 2.34,
 2.38, 0.65, 2.50, 1.15, 1.56, 2.38, 0.49, 2.49, 1.12, 2.55, 1.35,
 1.25, 0.96, 81.42, 79.54, 87.69, 86.26, 84.36, 82.74, 94.11, 92.66,
 91.02, 89.22, 87.37, 83.62, 99.02, 97.65, 95.81, 94.11, 90.90, 87.29,
 102.50, 100.64, 98.18, 94.57, 105.46, 101.85],
 "HBA1":
 [98.51, 100.28, 92.04, 93.65, 95.51, 97.60, 85.70, 87.12, 88.82, 90.78,
 92.98, 95.41, 80.72, 82.23, 84.02, 86.09, 88.41, 90.96, 77.37, 79.28,
 81.46, 83.91, 74.58, 76.90, 0.79, 1.36, 1.75, 0.90, 1.51, 2.13, 3.34,
 1.95, 1.56, 1.15, 2.34, 2.38, 0.65, 2.50, 1.15, 1.56, 2.38, 0.49,
 2.49, 1.12, 2.55, 1.34, 1.25, 0.96],
 "HBA_0":
 [0.79, 1.36, 1.75, 0.90, 1.51, 2.13, 3.34, 1.95, 1.56, 1.15, 2.34,
 2.38, 0.65, 2.50, 1.15, 1.56, 2.38, 0.49, 2.49, 1.12, 2.55, 1.35,
 1.25, 0.96, 81.42, 79.54, 87.69, 86.26, 84.36, 82.74, 94.11, 92.66,
 91.02, 89.22, 87.37, 83.62, 99.02, 97.65, 95.81, 94.11, 90.90, 87.29,
 102.50, 100.64, 98.18, 94.57, 105.46, 101.85],
 "HBA_1":
 [98.51, 100.28, 92.04, 93.65, 95.51, 97.60, 85.70, 87.12, 88.82, 90.78,
 92.98, 95.41, 80.72, 82.23, 84.02, 86.09, 88.41, 90.96, 77.37, 79.28,
 81.46, 83.91, 74.58, 76.90, 0.79, 1.36, 1.75, 0.90, 1.51, 2.13, 3.34,
 1.95, 1.56, 1.15, 2.34, 2.38, 0.65, 2.50, 1.15, 1.56, 2.38, 0.49,
 2.49, 1.12, 2.55, 1.34, 1.25, 0.96],
}

intl_dipole_distances = {
 "LBA":
 [3.55, 3.41, 3.87, 3.41, 5.61, 4.52, 4.96, 4.96, 3.81, 4.03, 4.03,
 4.15, 3.41, 3.42, 3.42, 3.42, 3.54, 3.46, 3.87, 4.68, 5.30, 5.54,
 5.17, 5.77, 3.62, 3.94, 4.07, 4.07, 3.92, 3.92, 5.65, 6.00, 3.91,
 3.49, 6.50, 6.50, 3.52, 3.48, 3.71, 3.71, 4.74, 4.31, 7.99, 7.03,
 3.56, 3.70, 3.50, 4.15, 4.34, 4.10, 4.98, 3.49, 3.25, 6.69, 3.61,
 3.41, 6.92, 3.85, 3.94, 6.85, 4.07, 3.85, 4.31, 3.41, 3.54, 3.48,
 3.42, 4.22, 3.35, 3.35, 3.47, 4.74, 3.70, 4.36, 3.54, 3.61, 3.54,
 4.15, 3.81, 5.98, 4.77, 4.34, 3.87, 3.63, 5.17, 3.52, 7.21, 3.42,
 3.41, 7.75, 3.48, 3.25, 4.95, 3.47, 3.50, 3.42],
 "LBA_OUTER":
 [3.55, 3.41, 3.87, 3.41, 5.61, 4.52, 4.96, 4.96, 3.81, 4.03, 4.03,
 4.15, 3.41, 3.42, 3.42, 3.42, 3.54, 3.46, 3.87, 4.68, 5.30, 5.54,
 5.17, 5.77, 3.62, 3.94, 4.07, 4.07, 3.92, 3.92, 5.65, 6.00, 3.91,
 3.49, 6.50, 6.50, 3.52, 3.48, 3.71, 3.71, 4.74, 4.31, 7.99, 7.03,
 3.56, 3.70, 3.50, 4.15, 4.34, 4.10, 4.98, 3.49, 3.25, 6.69, 3.61,
 3.41, 6.92, 3.85, 3.94, 6.85, 4.07, 3.85, 4.31, 3.41, 3.54, 3.48,
 3.42, 4.22, 3.35, 3.35, 3.47, 4.74, 3.70, 4.36, 3.54, 3.61, 3.54,
 4.15, 3.81, 5.98, 4.77, 4.34, 3.87, 3.63, 5.17, 3.52, 7.21, 3.42,
 3.41, 7.75, 3.48, 3.25, 4.95, 3.47, 3.50, 3.42,],
 "LBA_INNER":
 [3.55, 3.41, 3.87, 3.41, 5.61, 4.52, 4.96, 4.96, 3.81, 4.03, 4.03,
 4.15, 3.41, 3.42, 3.42, 3.42, 3.54, 3.46, 3.87, 4.68, 5.30, 5.54,
 5.17, 5.77, 3.62, 3.94, 4.07, 4.07, 3.92, 3.92, 5.65, 6.00, 3.91,
 3.49, 6.50, 6.50, 3.52, 3.48,
 3.71, 3.71, 4.74, 4.31, 7.99, 7.03, 3.56, 3.70, 3.50, 4.15, 4.34,
 4.10, 4.98, 3.49, 3.25, 6.69, 3.61, 3.41, 6.92, 3.85, 3.94, 6.85,
 4.07, 3.85, 4.31, 3.41, 3.54, 3.48, 3.42, 4.22, 3.35, 3.35, 3.47,
 4.74, 3.70, 4.36, 3.54, 3.61,
 3.54, 4.15, 3.81, 5.98, 4.77, 4.34, 3.87, 3.63, 5.17, 3.52, 7.21,
 3.42, 3.41, 7.75, 3.48, 3.25, 4.95, 3.47, 3.50, 3.42],
}

remote_dipole_distances = {
 "LBA_OUTER":
 [3.07, 3.07, 6.27, 4.14, 4.39, 5.36, 5.03, 7.18, 4.92, 5.01, 4.59,
 8.19, 6.19, 6.27, 6.27, 6.00, 4.14, 4.39, 7.84, 8.14, 7.38, 7.18,
 9.36, 5.80, 9.83, 7.08, 7.34, 7.40, 6.00, 10.25, 9.37, 8.83, 8.64,
 5.28, 7.66, 8.23, 8.23, 6.72, 5.80, 6.28, 11.06, 7.40, 10.80, 10.81,
 8.64, 5.28, 7.66, 9.06,],
 "LBA_SPARSE1":
 [3.07, 2.55, 6.27, 2.55, 4.39, 2.55, 5.03, 3.51, 4.92, 3.18, 4.59,
 3.19, 6.19, 3.43, 6.27, 3.18, 4.14, 3.66, 7.84, 3.23, 7.38, 3.38,
 9.36, 3.19, 9.83, 3.39, 7.34, 3.49, 6.00, 3.82, 9.37, 3.12, 8.64,
 2.99, 7.66, 3.38, 8.23, 3.36, 5.80, 2.79, 11.06, 3.39, 10.80, 3.99,
 8.64, 4.49, 7.66, 19.60,],
 "LBA_SPARSE0":
 [2.55, 3.07, 2.55, 4.14, 2.55, 5.36, 2.55, 7.18, 3.51, 5.01, 3.48,
 8.19, 3.25, 6.27, 3.48, 6.00, 3.58, 4.39, 4.32, 8.14, 3.23, 7.18,
 3.50, 5.80, 3.89, 7.08, 3.51, 7.40, 4.12, 10.25, 3.12, 8.83, 2.99,
 5.28, 3.32, 8.23, 3.36, 6.72, 4.75, 6.28, 2.79, 7.40, 4.15, 10.81,
 3.99, 5.28, 21.02, 9.06,],
 "LBA_Y":
 [3.07, 3.07, 6.27, 4.14, 4.39, 5.36, 5.03, 7.18, 4.92, 5.01, 4.59,
 8.19, 6.19, 6.27, 6.27, 6.00, 4.14, 4.39, 7.84, 8.14, 7.38, 7.18,
 9.36, 5.80, 9.83, 7.08, 7.34, 7.40, 6.00, 10.25, 9.37, 8.83, 8.64,
 5.28, 7.66, 8.23, 8.23, 6.72, 5.80, 6.28, 11.06, 7.40, 10.80, 10.81,
 8.64, 5.28, 7.66, 9.06,],
 "LBA_X":
 [2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 3.51, 3.51, 3.18, 3.48,
 3.19, 3.25, 3.43, 3.48, 3.18, 3.58, 3.66, 4.32, 3.23, 3.23, 3.38,
 3.50, 3.19, 3.89, 3.39, 3.51, 3.49, 4.12, 3.82, 3.12, 3.12, 2.99,
 2.99, 3.32, 3.38, 3.36, 3.36, 4.75, 2.79, 2.79, 3.39, 4.15, 3.99,
 3.99, 4.49, 21.02, 19.60,],
 "LBA":
 [2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 3.51, 3.51, 3.18, 3.48,
 3.19, 3.25, 3.43, 3.48, 3.18, 3.58, 3.66, 4.32, 3.23, 3.23, 3.38,
 3.50, 3.19, 3.89, 3.39, 3.51, 3.49, 4.12, 3.82, 3.12, 3.12, 2.99,
 2.99, 3.32, 3.38, 3.36, 3.36, 4.75, 2.79, 2.79, 3.39, 4.15, 3.99,
 3.99, 4.49, 21.02, 19.60, 3.07, 3.07, 6.27, 4.14, 4.39, 5.36, 5.03,
 7.18, 4.92, 5.01, 4.59, 8.19, 6.19, 6.27, 6.27, 6.00, 4.14, 4.39,
 7.84, 8.14, 7.38, 7.18, 9.36, 5.80, 9.83, 7.08, 7.34, 7.40, 6.00,
 10.25, 9.37, 8.83, 8.64, 5.28, 7.66, 8.23, 8.23, 6.72, 5.80, 6.28,
 11.06, 7.40, 10.80, 10.81, 8.64, 5.28, 7.66, 9.06,],
 "LBA_INNER":
 [2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 2.55, 3.51, 3.51, 3.18, 3.48,
 3.19, 3.25, 3.43, 3.48, 3.18, 3.58, 3.66, 4.32, 3.23, 3.23, 3.38,
 3.50, 3.19, 3.89, 3.39, 3.51, 3.49, 4.12, 3.82, 3.12, 3.12, 2.99,
 2.99, 3.32, 3.38, 3.36, 3.36, 4.75, 2.79, 2.79, 3.39, 4.15, 3.99,
 3.99, 4.49, 21.02, 19.60,],
}

[docs]def parse_antennafile(positions_file):
 """
 Parses an antenna file from the LOFAR system software repository.

 :param positions_file: a antenna file
 :returns: a dictionary with array as key and positions as values
 """

 file_handler = open(positions_file, 'r')
 parsed = {}
 state = 0
 array = None
 position = None # where is the station relative to the centre of the earth
 antennanum = 0
 positions = []
 antennacount = 0

 for line in file_handler:
 line = line.strip()

 if not line or line.startswith('#'):
 continue
 if state == 0: # array type
 array = line
 state = 1
 elif state == 1: # array position
 position = [float(x) for x in line.split()[2:5]]
 state = 2
 elif state == 2: # array properties meta data
 antennanum = int(line.split()[0])
 antennacount = antennanum
 state = 3
 elif state == 3:
 if antennacount > 0:
 positions.append([float(x) for x in line.split()])
 antennacount -= 1
 else:
 assert (line == "]")
 state = 0
 parsed[array] = positions
 positions = []
 return parsed

[docs]def shortest_distances(coordinates, full_array):
 """
 returns a list of distances for each antenna relative to its closest
 neighbour.

 :param coordinates: a list of 3 value tuples that represent x,y and z
 coordinates of a subset of the array
 :param full_array: a list of x,y,z coordinates of a full array
 :returns: a list of floats of distances
 """
 distances = []
 for a in coordinates:
 shortest_distance = None
 for b in full_array:
 distance = pow((a[0] - b[0]), 2) + pow((a[1] - b[1]), 2) + \
 pow((a[2] - b[2]), 2)
 if distance > 0.1 and (
 distance < shortest_distance or not shortest_distance):
 shortest_distance = distance
 distances.append(shortest_distance)
 return [math.sqrt(x) for x in distances]

[docs]def pretty_print(file_):
 """
 Pretty prints a parsed antenna file. Use this function to generate copy
 paste code to be used in the top of this file.

 :param file_: a file location
 """
 parsed = parse_antennafile(file_)
 print "{"
 for key, value in [x for x in parsed.items() if x[0].startswith("LBA")]:
 print '"%s": \n\t[' % key,
 ds = shortest_distances(value, parsed["LBA"])
 for d in ds:
 print "%.2f," % d,
 print "],"
 print "}"

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/telescope/lofar/noise.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.telescope.lofar.noise

"""
functions for calculating theoretical noise levels of LOFAR equipment.

For more information about the math used here read the `sensitivity of the
LOFAR array page
<http://www.astron.nl/radio-observatory/astronomers/lofar-imaging-capabilities-sensitivity/sensitivity-lofar-array/sensiti>`_.

To check the values calculated here one can use this `LOFAR image noise
calculator <http://www.astron.nl/~heald/test/sens.php>`_.

"""
import math
import logging
import warnings
import scipy.constants
import scipy.interpolate

from tkp.telescope.lofar import antennaarrays

logger = logging.getLogger(__name__)

ANTENNAE_PER_TILE = 16
TILES_PER_CORE_STATION = 24
TILES_PER_REMOTE_STATION = 48
TILES_PER_INTL_STATION = 96

[docs]def noise_level(freq_eff, bandwidth, tau_time, antenna_set, Ncore, Nremote,
 Nintl):
 """
 Returns the theoretical noise level (in Jy) given the supplied array
 antenna_set.

 :param bandwidth: in Hz
 :param tau_time: in seconds
 :param inner: in case of LBA, inner or outer
 :param antenna_set: LBA_INNER, LBA_OUTER, LBA_SPARSE, LBA or HBA
 """
 if antenna_set.startswith("LBA"):
 ds_core = antennaarrays.core_dipole_distances[antenna_set]
 Aeff_core = sum([Aeff_dipole(freq_eff, x) for x in ds_core])
 ds_remote = antennaarrays.remote_dipole_distances[antenna_set]
 Aeff_remote = sum([Aeff_dipole(freq_eff, x) for x in ds_remote])
 ds_intl = antennaarrays.intl_dipole_distances[antenna_set]
 Aeff_intl = sum([Aeff_dipole(freq_eff, x) for x in ds_intl])
 else:
 Aeff_core = ANTENNAE_PER_TILE * TILES_PER_CORE_STATION * \
 Aeff_dipole(freq_eff)
 Aeff_remote = ANTENNAE_PER_TILE * TILES_PER_REMOTE_STATION * \
 Aeff_dipole(freq_eff)
 Aeff_intl = ANTENNAE_PER_TILE * TILES_PER_INTL_STATION * \
 Aeff_dipole(freq_eff)

 # c = core, r = remote, i = international
 # so for example cc is core-core baseline
 Ssys_c = system_sensitivity(freq_eff, Aeff_core)
 Ssys_r = system_sensitivity(freq_eff, Aeff_remote)
 Ssys_i = system_sensitivity(freq_eff, Aeff_intl)

 baselines_cc = (Ncore * (Ncore - 1)) / 2
 baselines_rr = (Nremote * (Nremote - 1)) / 2
 baselines_ii = (Nintl * (Nintl - 1)) / 2
 baselines_cr = (Ncore * Nremote)
 baselines_ci = (Ncore * Nintl)
 baselines_ri = (Nremote * Nintl)

 #baselines_total = baselines_cc + baselines_rr + baselines_ii +\
 # baselines_cr + baselines_ci + baselines_ri

 # baseline noise, for example cc is core-core
 temp_cc = Ssys_c
 temp_rr = Ssys_r
 temp_ii = Ssys_i

 #temp_cr = math.sqrt(SEFD_cc) * math.sqrt(SEFD_rr)
 #temp_ci = math.sqrt(SEFD_cc) * math.sqrt(SEFD_ii)
 #temp_ri = math.sqrt(SEFD_rr) * math.sqrt(SEFD_ii)

 # The noise level in a LOFAR image
 t_cc = baselines_cc / (temp_cc * temp_cc)
 t_rr = baselines_rr / (temp_rr * temp_cc)
 t_ii = baselines_ii / (temp_ii * temp_ii)
 t_cr = baselines_cr / (temp_cc * temp_rr)
 t_ci = baselines_ci / (temp_cc * temp_ii)
 t_ri = baselines_ri / (temp_rr * temp_ii)

 # factor for increase of noise due to the weighting scheme
 W = 1 # taken from PHP script

 image_sens = W / math.sqrt(4 * bandwidth * tau_time *
 (t_cc + t_rr + t_ii + t_cr + t_ci + t_ri))

 return image_sens

[docs]def Aeff_dipole(freq_eff, distance=None):
 """
 The effective area of each dipole in the array is determined by its
 distance to the nearest dipole (d) within the full array.

 :param freq_eff: Frequency
 :param distance: Distance to nearest dipole, only required for LBA.
 """
 wavelength = scipy.constants.c/freq_eff
 if wavelength > 3: # LBA dipole
 if not distance:
 msg = "Distance to nearest dipole required for LBA noise calculation"
 logger.error(msg)
 warnings.warn(msg)
 distance = 1
 return min(pow(wavelength, 2) / 3, (math.pi * pow(distance, 2)) / 4)
 else: # HBA dipole
 return min(pow(wavelength, 2) / 3, 1.5625)

[docs]def system_sensitivity(freq_eff, Aeff):
 """
 Returns the SEFD of a system, given the freq_eff and effective
 collecting area. Returns SEFD in Jansky's.
 """
 wavelength = scipy.constants.c / freq_eff

 # Ts0 = 60 +/- 20 K for Galactic latitudes between 10 and 90 degrees.
 Ts0 = 60

 # system efficiency factor (~ 1.0)
 n = 1

 # For all LOFAR frequencies the sky brightness temperature is dominated by
 # the Galactic radiation, which depends strongly on the wavelength
 Tsky = Ts0 * wavelength ** 2.55

 #The instrumental noise temperature follows from measurements or simulations
 # This is a quick & dirty approach based roughly on Fig 5 here
 # <http://www.skatelescope.org/uploaded/59513_113_Memo_Nijboer.pdf>
 sensitivities = [
 (0, 0),
 (10e6, 0.1 * Tsky),
 (40e6, 0.7 * Tsky),
 (50e6, 0.85 * Tsky),
 (55e6, 0.9 * Tsky),
 (60e6, 0.85 * Tsky),
 (70e6, 0.6 * Tsky),
 (80e6, 0.3 * Tsky),
 (90e6, 0 * Tsky),
 (110e6, 0 * Tsky),
 (120e6, 200),
 (300e6, 200)
]
 x, y = zip(*sensitivities)
 sensitivity = scipy.interpolate.interp1d(x, y, kind='linear')
 Tinst = sensitivity(freq_eff)

 Tsys = Tsky + Tinst

 # SEFD or system sensitivity
 S = (2 * n * scipy.constants.k / Aeff) * Tsys

 # S is in Watts per square metre per Hertz. One Jansky = 10**-26 Watts/sq
 # metre/Hz
 return S * 10**26

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/nulldetections.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.nulldetections

"""
A collection of back end subroutines (mostly SQL queries).

This module contains the routines to deal with null detections.
"""
import logging
from tkp.db import execute as execute
from tkp.db.associations import _empty_temprunningcatalog as _del_tempruncat
from tkp.db.associations import (
 ONE_TO_ONE_ASSOC_QUERY, _insert_1_to_1_runcat_flux,
 _update_1_to_1_runcat_flux)

logger = logging.getLogger(__name__)

[docs]def get_nulldetections(image_id):
 """
 Returns the runningcatalog sources which:

 * Are associated with the skyregion of the current image.
 * Do not have a counterpart in the extractedsources of the current
 image after source association has run.
 * Have been seen (in any band) at a timestamp earlier than that of the
 current image.

 NB This runs *after* the source association.

 We determine null detections only as those sources which have been
 seen at earlier times which don't appear in the current image.
 Sources which have not been seen earlier, and which appear in
 different bands at the current timestep, are *not* null detections,
 but are considered as "new" sources.

 Returns: list of tuples [(runcatid, ra, decl)]
 """

 # The first temptable t0 looks for runcat sources that have been seen
 # in the same sky region as the current image,
 # but at an earlier timestamp, irrespective of the band.
 # The second temptable t1 returns the runcat source ids for those sources
 # that have an association with the current extracted sources.
 # The left outer join in combination with the t1.runcat IS NULL then
 # returns the runcat sources that could not be associated.

 query = """\
SELECT t0.id
 ,t0.wm_ra
 ,t0.wm_decl
 FROM (SELECT r0.id
 ,r0.wm_ra
 ,r0.wm_decl
 FROM image i0
 ,assocskyrgn a0
 ,runningcatalog r0
 ,extractedsource x0
 ,image i1
 WHERE i0.id = %(image_id)s
 AND a0.skyrgn = i0.skyrgn
 AND r0.id = a0.runcat
 AND x0.id = r0.xtrsrc
 AND i1.id = x0.image
 AND i0.taustart_ts > i1.taustart_ts
) t0
 LEFT OUTER JOIN (SELECT a.runcat
 FROM extractedsource x
 ,assocxtrsource a
 WHERE x.image = %(image_id)s
 AND a.xtrsrc = x.id
) t1
 ON t0.id = t1.runcat
 WHERE t1.runcat IS NULL
"""
 qry_params = {'image_id': image_id}
 cursor = execute(query, qry_params)
 res = cursor.fetchall()
 return res

[docs]def associate_nd(image_id):
 """
 Associate the null detections (ie forced fits) of the current image.

 They will be inserted in a temporary table, which contains the
 associations of the forced fits with the running catalog sources.
 Also, the forced fits are appended to the assocxtrsource (light-curve)
 table. The runcat_flux table is updated with the new datapoints if it
 already existed, otherwise it is inserted as a new datapoint.
 (We leave the runcat table unchanged.)
 After all this, the temporary table is emptied again.
 """

 _del_tempruncat()
 _insert_tempruncat(image_id)
 _insert_1_to_1_assoc()

 n_updated = _update_1_to_1_runcat_flux()
 if n_updated:
 logger.debug("Updated flux for %s null_detections" % n_updated)
 n_inserted = _insert_1_to_1_runcat_flux()
 if n_inserted:
 logger.debug("Inserted new-band flux measurement for %s null_detections"
 % n_inserted)
 _del_tempruncat()

[docs]def _insert_tempruncat(image_id):
 """
 Here the associations of forced fits and their runningcatalog counterparts
 are inserted into the temporary table.

 We follow the analogies of the normal association procedure.
 The difference here is that we know what the runcat ids are for the
 extractedsource.extract_type = 1 (ff_nd) sources are, since these
 were inserted at the same time as well.

 This is why subtable t0 looks simpler than in the normal case. We
 still have to do a left outer join with the runcat_flux table (rf),
 because fluxes might not be detected in other bands.
 Before being inserted the additional properties are calculated.

 """

 query = """\
INSERT INTO temprunningcatalog
 (runcat
 ,xtrsrc
 ,distance_arcsec
 ,r
 ,dataset
 ,band
 ,stokes
 ,datapoints
 ,zone
 ,wm_ra
 ,wm_decl
 ,wm_uncertainty_ew
 ,wm_uncertainty_ns
 ,avg_ra_err
 ,avg_decl_err
 ,avg_wra
 ,avg_wdecl
 ,avg_weight_ra
 ,avg_weight_decl
 ,x
 ,y
 ,z
 ,f_datapoints
 ,avg_f_peak
 ,avg_f_peak_sq
 ,avg_f_peak_weight
 ,avg_weighted_f_peak
 ,avg_weighted_f_peak_sq
 ,avg_f_int
 ,avg_f_int_sq
 ,avg_f_int_weight
 ,avg_weighted_f_int
 ,avg_weighted_f_int_sq
)
 SELECT t0.runcat
 ,t0.xtrsrc
 ,0 AS distance_arcsec
 ,0 AS r
 ,t0.dataset
 ,t0.band
 ,t0.stokes
 ,t0.datapoints
 ,t0.zone
 ,t0.wm_ra
 ,t0.wm_decl
 ,t0.wm_uncertainty_ew
 ,t0.wm_uncertainty_ns
 ,t0.avg_ra_err
 ,t0.avg_decl_err
 ,t0.avg_wra
 ,t0.avg_wdecl
 ,t0.avg_weight_ra
 ,t0.avg_weight_decl
 ,t0.x
 ,t0.y
 ,t0.z
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN 1
 ELSE rf.f_datapoints + 1
 END AS f_datapoints
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak
 ELSE (rf.f_datapoints * rf.avg_f_peak
 + t0.f_peak)
 / (rf.f_datapoints + 1)
 END AS avg_f_peak
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak
 ELSE (rf.f_datapoints * rf.avg_f_peak_sq
 + t0.f_peak * t0.f_peak)
 / (rf.f_datapoints + 1)
 END AS avg_f_peak_sq
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN 1 / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf.f_datapoints * rf.avg_f_peak_weight
 + 1 / (t0.f_peak_err * t0.f_peak_err))
 / (rf.f_datapoints + 1)
 END AS avg_f_peak_weight
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_peak
 + t0.f_peak / (t0.f_peak_err * t0.f_peak_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_peak
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_peak * t0.f_peak / (t0.f_peak_err * t0.f_peak_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_peak_sq
 + (t0.f_peak * t0.f_peak) / (t0.f_peak_err * t0.f_peak_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_peak_sq
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int
 ELSE (rf.f_datapoints * rf.avg_f_int
 + t0.f_int)
 / (rf.f_datapoints + 1)
 END AS avg_f_int
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int
 ELSE (rf.f_datapoints * rf.avg_f_int_sq
 + t0.f_int * t0.f_int)
 / (rf.f_datapoints + 1)
 END AS avg_f_int_sq
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN 1 / (t0.f_int_err * t0.f_int_err)
 ELSE (rf.f_datapoints * rf.avg_f_int_weight
 + 1 / (t0.f_int_err * t0.f_int_err))
 / (rf.f_datapoints + 1)
 END AS avg_f_int_weight
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_int
 + t0.f_int / (t0.f_int_err * t0.f_int_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_int
 ,CASE WHEN rf.f_datapoints IS NULL
 THEN t0.f_int * t0.f_int / (t0.f_int_err * t0.f_int_err)
 ELSE (rf.f_datapoints * rf.avg_weighted_f_int_sq
 + (t0.f_int * t0.f_int) / (t0.f_int_err * t0.f_int_err))
 / (rf.f_datapoints + 1)
 END AS avg_weighted_f_int_sq
 FROM (SELECT r.id AS runcat
 ,x.id AS xtrsrc
 ,x.f_peak
 ,x.f_peak_err
 ,x.f_int
 ,x.f_int_err
 ,i.dataset
 ,i.band
 ,i.stokes
 ,r.datapoints
 ,r.zone
 ,r.wm_ra
 ,r.wm_decl
 ,r.wm_uncertainty_ew
 ,r.wm_uncertainty_ns
 ,r.avg_ra_err
 ,r.avg_decl_err
 ,r.avg_wra
 ,r.avg_wdecl
 ,r.avg_weight_ra
 ,r.avg_weight_decl
 ,r.x
 ,r.y
 ,r.z
 FROM extractedsource x
 ,image i
 ,runningcatalog r
 WHERE x.image = %(image_id)s
 AND x.extract_type = 1
 AND i.id = x.image
 AND r.id = x.ff_runcat
 AND r.mon_src = FALSE
) t0
 LEFT OUTER JOIN runningcatalog_flux rf
 ON t0.runcat = rf.runcat
 AND t0.band = rf.band
 AND t0.stokes = rf.stokes
"""
 qry_params = {'image_id': image_id}
 cursor = execute(query, qry_params, commit=True)
 cnt = cursor.rowcount
 logger.debug("Inserted %s null detections in tempruncat" % cnt)

[docs]def _insert_1_to_1_assoc():
 """
 The null detection forced fits are appended to the assocxtrsource
 (light-curve) table as a type = 7 datapoint.
 Subtable t1 has to take care of the cases where values and
 differences might get too small to cause divisions by zero.

 """
 cursor = execute(ONE_TO_ONE_ASSOC_QUERY, {'type': 7}, commit=True)
 cnt = cursor.rowcount
 logger.debug("Inserted %s 1-to-1 null detections in assocxtrsource" % cnt)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/general.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.general

"""
A collection of back end subroutines (mostly SQL queries).

In this module we collect together various routines
that don't fit into a more specific collection.
"""

import math
import logging
import itertools

import tkp.db
from tkp.utility.coordinates import eq_to_cart
from tkp.utility.coordinates import alpha_inflate
from tkp.utility import substitute_inf

logger = logging.getLogger(__name__)

lightcurve_query = """
SELECT im.taustart_ts
 ,im.tau_time
 ,ex.f_int
 ,ex.f_int_err
 ,ex.id
 ,im.band
 ,im.stokes
 ,bd.freq_central
 FROM extractedsource ex
 ,assocxtrsource ax
 ,image im
 ,frequencyband bd
 WHERE ax.runcat IN (SELECT runcat
 FROM assocxtrsource
 WHERE xtrsrc = %(xtrsrc)s
)
 AND ax.xtrsrc = ex.id
 AND ex.image = im.id
 AND bd.id = im.band
ORDER BY im.taustart_ts
"""

update_dataset_process_end_ts_query = """
UPDATE dataset
 SET process_end_ts = NOW()
 WHERE id = %(dataset_id)s
"""

[docs]def update_dataset_process_end_ts(dataset_id):
 """Update dataset start-of-processing timestamp.

 """
 args = {'dataset_id': dataset_id}
 tkp.db.execute(update_dataset_process_end_ts_query, args, commit=True)
 return dataset_id

[docs]def insert_dataset(description):
 """Insert dataset with description as given by argument.

 DB function insertDataset() sets the necessary default values.
 """
 query = "SELECT insertDataset(%s)"
 arguments = (description,)
 cursor = tkp.db.execute(query, arguments, commit=True)
 dataset_id = cursor.fetchone()[0]
 return dataset_id

[docs]def insert_monitor_positions(dataset_id, positions):
 """
 Add entries to the ``monitor`` table.

 Args:
 dataset_id (int): Positions will only be monitored when processing this
 dataset.
 positions (list of tuples): List of (RA, decl) tuples in decimal degrees.
 """

 monitor_entries = [(dataset_id, p[0], p[1]) for p in positions]

 insertion_query = """\
INSERT INTO monitor
 (
 dataset
 ,ra
 ,decl
)
VALUES {placeholder}
"""
 cols_per_row = 3
 placeholder_per_row = '('+ ','.join(['%s']*cols_per_row) +')'
 placeholder_full = ','.join([placeholder_per_row]*len(positions))
 query = insertion_query.format(placeholder= placeholder_full)
 cursor = tkp.db.execute(
 query, tuple(itertools.chain.from_iterable(monitor_entries)),
 commit=True)
 insert_num = cursor.rowcount
 logger.info("Inserted %d sources in monitor table for dataset %s" %
 (insert_num, dataset_id))

[docs]def insert_image(dataset, freq_eff, freq_bw,
 taustart_ts, tau_time,
 beam_smaj_pix, beam_smin_pix, beam_pa_rad,
 deltax, deltay,
 url,
 centre_ra, centre_decl, xtr_radius,
 rms_qc, rms_min, rms_max,
 detection_thresh, analysis_thresh
):
 """
 Insert an image for a given dataset.

 Args:
 dataset (int): ID of parent dataset.
 freq_eff: See :ref:`Image table definitions <schema-image>`.
 freq_bw: See :ref:`Image table definitions <schema-image>`.
 taustart_ts: See :ref:`Image table definitions <schema-image>`.
 taus_time: See :ref:`Image table definitions <schema-image>`.
 beam_smaj_pix (float): Restoring beam semimajor axis length in pixels.
 (Converted to degrees before storing to database).
 beam_smin_pix (float): Restoring beam semiminor axis length in pixels.
 (Converted to degrees before storing to database).
 beam_pa_rad (float): Restoring beam parallactic angle in radians.
 (Converted to degrees before storing to database).
 deltax(float): Degrees per pixel increment in x-direction.
 deltay(float): Degrees per pixel increment in y-direction.
 centre_ra(float): Image central RA co-ord, in degrees.
 centre_decl(float): Image central Declination co-ord, in degrees.
 xtr_radius(float): Radius in degrees from field centre that will be used
 for source extraction.

 """
 query = """\
 SELECT insertImage(%(dataset)s
 ,%(tau_time)s
 ,%(freq_eff)s
 ,%(freq_bw)s
 ,%(taustart_ts)s
 ,%(rb_smaj)s
 ,%(rb_smin)s
 ,%(rb_pa)s
 ,%(deltax)s
 ,%(deltay)s
 ,%(url)s
 ,%(centre_ra)s
 ,%(centre_decl)s
 ,%(xtr_radius)s
 ,%(rms_qc)s
 ,%(rms_min)s
 ,%(rms_max)s
 ,%(detection_thresh)s
 ,%(analysis_thresh)s
)
 """
 arguments = {'dataset': dataset,
 'tau_time': tau_time,
 'freq_eff': freq_eff,
 'freq_bw': freq_bw,
 'taustart_ts': taustart_ts,
 'rb_smaj': beam_smaj_pix * math.fabs(deltax),
 'rb_smin': beam_smin_pix * math.fabs(deltay),
 'rb_pa': 180 * beam_pa_rad / math.pi,
 'deltax': deltax,
 'deltay': deltay,
 'url': url,
 'centre_ra': centre_ra,
 'centre_decl': centre_decl,
 'xtr_radius': xtr_radius,
 'rms_qc': rms_qc,
 'rms_min': rms_min,
 'rms_max': rms_max,
 'detection_thresh': detection_thresh,
 'analysis_thresh': analysis_thresh,
 }
 cursor = tkp.db.execute(query, arguments, commit=True)
 image_id = cursor.fetchone()[0]
 return image_id

[docs]def insert_extracted_sources(image_id, results, extract_type,
 ff_runcat_ids=None, ff_monitor_ids=None):
 """
 Insert all detections from sourcefinder into the extractedsource table.

 Besides the source properties from sourcefinder, we calculate additional
 attributes that are increase performance in other tasks.

 The strict sequence from results (the sourcefinder detections) is given below.
 Note the units between sourcefinder and database.
 (0) ra [deg], (1) dec [deg],
 (2) ra_fit_err [deg], (3) decl_fit_err [deg],
 (4) peak_flux [Jy], (5) peak_flux_err [Jy],
 (6) int_flux [Jy], (7) int_flux_err [Jy],
 (8) significance detection level,
 (9) beam major width (arcsec), (10) - minor width (arcsec), (11) - parallactic angle [deg],
 (12) ew_sys_err [arcsec], (13) ns_sys_err [arcsec],
 (14) error_radius [arcsec]
 (15) gaussian fit (bool)
 (16), (17) chisq, reduced_chisq (float)

 ra_fit_err and decl_fit_err are the 1-sigma errors from the gaussian fit,
 in degrees. Note that for a source located towards the poles the ra_fit_err
 increases with absolute declination.
 error_radius is a pessimistic on-sky error estimate in arcsec.
 ew_sys_err and ns_sys_err represent the telescope dependent systematic errors
 and are in arcsec.
 An on-sky error (declination independent, and used in de ruiter calculations)
 is then:
 uncertainty_ew^2 = ew_sys_err^2 + error_radius^2
 uncertainty_ns^2 = ns_sys_err^2 + error_radius^2
 The units of uncertainty_ew and uncertainty_ns are in degrees.
 The error on RA is given by ra_err. For a source with an RA of ra and an error
 of ra_err, its RA lies in the range [ra-ra_err, ra+ra_err].
 ra_err^2 = ra_fit_err^2 + [alpha_inflate(ew_sys_err,decl)]^2
 decl_err^2 = decl_fit_err^2 + ns_sys_err^2.
 The units of ra_err and decl_err are in degrees.
 Here alpha_inflate() is the RA inflation function, it converts an
 angular on-sky distance to a ra distance at given declination.

 Input argument "extract" tells whether the source detections originate from:
 'blind': blind source extraction
 'ff_nd': from forced fits at null detection locations
 'ff_ms': from forced fits at monitoringlist positions

 Input argument ff_runcat is not empty in the case of forced fits from
 null detections. It contains the runningcatalog ids from which the
 source positions were derived for the forced fits. In that case the
 runcat ids will be inserted into the extractedsource table as well,
 to simplify further null-detection processing.
 For blind extractions this list is empty (None).

 For all extracted sources additional parameters are calculated,
 and appended to the sourcefinder data. Appended and converted are:

 - the image id to which the extracted sources belong to
 - the zone in which an extracted source falls is calculated, based
 on its declination. We adopt a zoneheight of 1 degree, so
 the floor of the declination represents the zone.
 - the positional errors are converted from degrees to arcsecs
 - the Cartesian coordinates of the source position
 - ra * cos(radians(decl)), this is very often being used in
 source-distance calculations
 """
 if not len(results):
 logger.info("No extract_type=%s sources added to extractedsource for"
 " image %s" % (extract_type, image_id))
 return

 xtrsrc = []
 for i, src in enumerate(results):
 r = list(src)
 # Drop any fits with infinite flux errors
 if math.isinf(r[5]) or math.isinf(r[7]):
 logger.warn("Dropped source fit with infinite flux errors "
 "at position %s %s" % (r[0], r[1]))
 continue
 # Use 360 degree rather than infinite uncertainty for
 # unconstrained positions.
 r[14] = substitute_inf(r[14], 360.0)
 r[15] = int(r[15])
 # ra_err: sqrt of quadratic sum of fitted and systematic errors.
 r.append(math.sqrt(r[2]**2 + alpha_inflate(r[12]/3600., r[1])**2))
 # decl_err: sqrt of quadratic sum of fitted and systematic errors.
 r.append(math.sqrt(r[3]**2 + (r[13]/3600.)**2))
 # uncertainty_ew: sqrt of quadratic sum of systematic error and error_radius
 # divided by 3600 because uncertainty in degrees and others in arcsec.
 r.append(math.sqrt(r[12]**2 + r[14]**2)/3600.)
 # uncertainty_ns: sqrt of quadratic sum of systematic error and error_radius
 # divided by 3600 because uncertainty in degrees and others in arcsec.
 r.append(math.sqrt(r[13]**2 + r[14]**2)/3600.)
 r.append(image_id) # id of the image
 r.append(int(math.floor(r[1]))) # zone
 r.extend(eq_to_cart(r[0], r[1])) # Cartesian x,y,z
 r.append(r[0] * math.cos(math.radians(r[1]))) # ra * cos(radians(decl))
 if extract_type == 'blind':
 r.append(0)
 elif extract_type == 'ff_nd':
 r.append(1)
 elif extract_type == 'ff_ms':
 r.append(2)
 else:
 raise ValueError("Not a valid extractedsource insert type: '%s'"
 % extract_type)
 if ff_runcat_ids is not None:
 assert len(results)==len(ff_runcat_ids)
 r.append(ff_runcat_ids[i])
 else:
 r.append(None)

 if ff_monitor_ids is not None:
 assert len(results)==len(ff_monitor_ids)
 r.append(ff_monitor_ids[i])
 else:
 r.append(None)

 xtrsrc.append(r)

 insertion_query = """\
INSERT INTO extractedsource
 (ra
 ,decl
 ,ra_fit_err
 ,decl_fit_err
 ,f_peak
 ,f_peak_err
 ,f_int
 ,f_int_err
 ,det_sigma
 ,semimajor
 ,semiminor
 ,pa
 ,ew_sys_err
 ,ns_sys_err
 ,error_radius
 ,fit_type
 ,chisq
 ,reduced_chisq
 ,ra_err
 ,decl_err
 ,uncertainty_ew
 ,uncertainty_ns
 ,image
 ,zone
 ,x
 ,y
 ,z
 ,racosdecl
 ,extract_type
 ,ff_runcat
 ,ff_monitor
)
VALUES {placeholder}
"""
 if xtrsrc:
 cols_per_row = len(xtrsrc[0])
 placeholder_per_row = '('+ ','.join(['%s']*cols_per_row) +')'

 placeholder_full = ','.join([placeholder_per_row]*len(xtrsrc))

 query = insertion_query.format(placeholder= placeholder_full)
 cursor = tkp.db.execute(query, tuple(itertools.chain.from_iterable(xtrsrc)),
 commit=True)
 insert_num = cursor.rowcount
 #if insert_num == 0:
 # logger.info("No forced-fit sources added to extractedsource for "
 # "image %s" % (image_id,))
 if extract_type == 'blind':
 logger.info("Inserted %d sources in extractedsource for image %s" %
 (insert_num, image_id))
 elif extract_type == 'ff_nd':
 logger.info("Inserted %d forced-fit null detections in extractedsource"
 " for image %s" % (insert_num, image_id))
 elif extract_type == 'ff_ms':
 logger.info("Inserted %d forced-fit for monitoring in extractedsource"
 " for image %s" % (insert_num, image_id))

[docs]def lightcurve(xtrsrcid):
 """
 Obtain a light curve for a specific extractedsource

 Args:

 xtrsrcid (int): the source identifier that corresponds to a point on
 the light curve. Note that the point does not have to be the start
 (first) point of the light curve.

 Returns:
 list: a list of tuples, each containing:
 - observation start time as a datetime.datetime object
 - integration time (float)
 - integrated flux (float)
 - integrated flux error (float)
 - database ID of this particular source
 - frequency band ID
 - stokes
 """
 args = {'xtrsrc': xtrsrcid}
 cursor = tkp.db.execute(lightcurve_query, args)
 return cursor.fetchall()

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/quality.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.quality

"""
check image quality
"""
import logging
from collections import namedtuple
import tkp.db

logger = logging.getLogger(__name__)

TODO: need to think of a way to sync this with tkp/db/tables/rejection.sql
RejectReason = namedtuple('RejectReason', 'id desc')

reason = {
 'rms': RejectReason(id=0, desc='RMS invalid'),
 'beam': RejectReason(id=1, desc='beam invalid'),
 'bright_source': RejectReason(id=2, desc='bright source near'),
 'tau_time': RejectReason(id=3, desc='tau_time invalid'),
}

query_reject = """\
INSERT INTO rejection
 (image
 ,rejectreason
 ,comment
)
VALUES
 (%(imageid)s
 ,%(reason)s
 ,'%(comment)s'
)
"""

query_unreject = """\
DELETE
 FROM rejection
 WHERE image=%(image)s
"""

query_isrejected = """\
SELECT rejectreason.description, rejection.comment
 FROM rejection, rejectreason
 WHERE rejection.rejectreason = rejectreason.id
 AND rejection.image = %(imageid)s
"""

[docs]def reject(imageid, reason, comment):
 """ Add a reject intro to the db for a given image
 :param imageid: The image ID of the image to reject
 :param reason: why is the image rejected, a defined in 'reason'
 :param comment: an optional comment with details about the reason
 """
 args = {'imageid': imageid, 'reason': reason, 'comment': comment}
 query = query_reject % args
 tkp.db.execute(query, commit=True)

[docs]def unreject(imageid):
 """ Remove all rejection of a given imageid
 :param imageid: The image ID of the image to reject
 """
 query = query_unreject % {'image': imageid}
 tkp.db.execute(query, commit=True)

[docs]def isrejected(imageid):
 """ Find out if an image is rejected or not
 :param imageid: The image ID of the image to reject
 :returns: False if not rejected, a list of reason id's if rejected
 """
 query = query_isrejected % {'imageid': imageid}
 cursor = tkp.db.execute(query)
 results = cursor.fetchall()
 if len(results) > 0:
 return ["%s: %s" % row for row in results]
 else:
 return False

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/db/generic.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 		tkp.db »

 Source code for tkp.db.generic

"""
A collection of generic functions used to generate SQL queries
and return data in an easy to use format such as dictionaries.
"""
import logging
import tkp.db

logger = logging.getLogger(__name__)

[docs]def columns_from_table(table, keywords=None, alias=None, where=None,
 order=None):
 """Obtain specific column (keywords) values from 'table', with
 kwargs limitations.

 A very simple helper function, that builds an SQL query to obtain
 the specified columns from 'table', and then executes that
 query. Optionally, the WHERE clause can be specified using the
 where dictionary. It returns a list of a
 dict (with the originally supplied keywords as dictionary keys),
 which can be empty.

 Example:

 >>> columns_from_table('image', \
 keywords=['taustart_ts', 'tau_time', 'freq_eff', 'freq_bw'], where={'imageid': 1})
 [{'freq_eff': 133984375.0, 'taustart_ts': datetime.datetime(2010, 10, 9, 9, 4, 2), 'tau_time': 14400.0, 'freq_bw': 1953125.0}]

 This builds the SQL query:
 "SELECT taustart_ts, tau_time, freq_eff, freq_bw FROM image WHERE imageid=1"

 This function is implemented mainly to abstract and hide the SQL
 functionality from the Python interface.

 Args:

 conn: database connection object

 table (string): database table name

 Kwargs:

 keywords (list): column names to select from the table. None indicates all ('*')

 where (dict): where clause for the query, specified as a set
 of 'key = value' comparisons. Comparisons are and-ed
 together. Obviously, only 'is equal' comparisons are
 possible.

 alias (dict): Chosen aliases for the column names,
 used when constructing the returned list of dictionaries

 order (string): ORDER BY key.

 Returns:

 list: list of dicts. Each dict contains the given keywords,
 or all if keywords=None. Each element of the list
 corresponds to a table row.

 """
 if keywords is None:
 query = "SELECT * FROM " + table
 else:
 query = "SELECT " + ", ".join(keywords) + " FROM " + table
 if where is None:
 where = {}
 where_args = tuple(where.itervalues())
 where = " AND ".join(["%s=%%s" % key for key in where.iterkeys()])
 if where:
 query += " WHERE " + where
 if order:
 query += " ORDER BY " + order

 cursor = tkp.db.execute(query, where_args)
 results = cursor.fetchall()
 results_dict = convert_db_rows_to_dicts(results, cursor.description, alias)
 return results_dict

[docs]def convert_db_rows_to_dicts(results, cursor_description, alias_map=None):
 """Takes a list of rows as returned by cursor.fetchall(),
 converts to a list of dictionaries."""
 col_names = [d[0] for d in cursor_description]
 if alias_map is not None: # Replace column names with chosen alias
 for index, k in enumerate(col_names):
 if k in alias_map:
 col_names[index] = alias_map[k]
 #NB enumerate generates only one loop
 #so store it in a list!
 col_index = [(i, c) for i, c in enumerate(col_names)]
 result_dicts = []
 for row in results:
 rd = dict((keyword, row[index])
 for index, keyword in col_index)
 result_dicts.append(rd)
 return result_dicts

[docs]def get_db_rows_as_dicts(cursor, alias_map=None):
 """Grab results of cursor.fetchall(), convert to a list of dictionaries."""
 return convert_db_rows_to_dicts(cursor.fetchall(), cursor.description,
 alias_map)

[docs]def set_columns_for_table(table, data=None, where=None):
 """Set specific columns (keywords) for 'table', with 'where'
 limitations.

 A simple helper function, that builds an SQL query to update the
 specified columns given by data for 'table', and then executes
 that query. Optionally, the WHERE clause can be specified using
 the 'where' dictionary.

 The data argument is a dictionary with the names and corresponding
 values of the columns that need to be updated.
 """
 query = "UPDATE " + table + " SET " + ", ".join(["%s=%%s" % key for key in data.iterkeys()])
 if where is None:
 where = {}
 where_args = tuple(where.itervalues())
 where = " AND ".join(["%s=%%s" % key for key in where.iterkeys()])
 values = tuple(data.itervalues())
 if where:
 query += " WHERE " + where

 tkp.db.execute(query, values + where_args, commit=True)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/steps/source_extraction.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.steps.source_extraction

import logging
import tkp.accessors
from tkp.accessors import sourcefinder_image_from_accessor
import tkp.accessors
from collections import namedtuple

logger = logging.getLogger(__name__)

#Short-lived struct for returning results from the source extraction routine:
ExtractionResults = namedtuple('ExtractionResults',
 ['sources',
 'rms_min',
 'rms_max'])

[docs]def extract_sources(image_path, extraction_params):
 """
 Extract sources from an image.

 args:
 image_path: path to file from which to extract sources.
 extraction_params: dictionary containing at least the detection and
 analysis threshold and the association radius, the last one a
 multiplication factor of the de Ruiter radius.
 returns:
 list of ExtractionResults named tuples containing source measurements,
 min RMS value and max RMS value
 """
 logger.info("Extracting image: %s" % image_path)
 accessor = tkp.accessors.open(image_path)
 logger.debug("Detecting sources in image %s at detection threshold %s",
 image_path, extraction_params['detection_threshold'])
 data_image = sourcefinder_image_from_accessor(accessor,
 margin=extraction_params['margin'],
 radius=extraction_params['extraction_radius_pix'],
 back_size_x=extraction_params['back_size_x'],
 back_size_y=extraction_params['back_size_y'])

 logger.debug("Employing margin: %s extraction radius: %s deblend_nthresh: %s",
 extraction_params['margin'],
 extraction_params['extraction_radius_pix'],
 extraction_params['deblend_nthresh']
)

 # "blind" extraction of sources
 results = data_image.extract(
 det=extraction_params['detection_threshold'],
 anl=extraction_params['analysis_threshold'],
 deblend_nthresh=extraction_params['deblend_nthresh'],
 force_beam=extraction_params['force_beam']
)
 logger.info("Detected %d sources in image %s" % (len(results), image_path))

 ew_sys_err = extraction_params['ew_sys_err']
 ns_sys_err = extraction_params['ns_sys_err']
 serialized = [r.serialize(ew_sys_err, ns_sys_err) for r in results]
 return ExtractionResults(sources=serialized,
 rms_min=float(data_image.rmsmap.min()),
 rms_max=float(data_image.rmsmap.max())
)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/steps/quality.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.steps.quality

"""
All generic quality checking routines.
"""
import logging

from tkp.telescope.lofar.quality import reject_check_lofar
from tkp.accessors.lofaraccessor import LofarAccessor
import tkp.accessors
import tkp.db.quality
import tkp.quality.brightsource
import tkp.quality

logger = logging.getLogger(__name__)

[docs]def reject_check(image_path, job_config):
 """ checks if an image passes the quality check. If not, a rejection
 tuple is returned.

 NOTE: should only be used on a NODE

 args:
 id: database ID of image. This is not used but kept as a reference for
 distributed computation!
 image_path: path to image
 parset_file: parset file location with quality check parameters
 Returns:
 (rejection ID, description) if rejected, else None
 """

 accessor = tkp.accessors.open(image_path)
 # Only run LOFAR-specific QC checks on LOFAR images.
 if isinstance(accessor, LofarAccessor):
 return reject_check_lofar(
 accessor, job_config
)
 else:
 logger.warn(
 "Unrecognised telescope %s for file %s, no quality checks.",
 accessor.telescope, image_path
)
 return None

[docs]def reject_image(image_id, reason, comment):
 """
 Adds a rejection for an image to the database

 NOTE: should only be used on a MASTER node
 """
 tkp.db.quality.reject(image_id, reason, comment)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/steps/persistence.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.steps.persistence

"""
This `step` is used for the storing of images and metadata
to the database and image cache (mongodb).
"""
import os
import logging
import warnings
from tempfile import NamedTemporaryFile

from casacore.images import image as casacore_image

import tkp.accessors
from tkp.db.database import Database
from tkp.db.orm import DataSet, Image
from tkp.quality.statistics import rms_with_clipped_subregion

logger = logging.getLogger(__name__)

[docs]def image_to_mongodb(filename, hostname, port, db):
 """Copy a file into mongodb"""

 try:
 import pymongo
 import gridfs
 except ImportError:
 msg = "Could not import MongoDB modules"
 logger.error(msg)
 warnings.warn(msg)
 return False

 try:
 connection = pymongo.Connection(host=hostname, port=port)
 gfs = gridfs.GridFS(connection[db])
 if gfs.exists(filename=filename):
 logger.debug("File already in database")

 else:
 # This conversion should work whether the input file
 # is in FITS or CASA format.
 # temp_fits_file is removed automatically when closed.
 temp_fits_file = NamedTemporaryFile()
 i = casacore_image(filename)
 i.tofits(temp_fits_file.name)
 new_file = gfs.new_file(filename=filename)
 with open(temp_fits_file.name, "r") as f:
 new_file.write(f)
 new_file.close()
 logger.info("Saved local copy of %s on %s"\
 % (os.path.basename(filename), hostname))
 except Exception, e:
 msg = "Failed to save image to MongoDB: %s" % (str(e),)
 logger.error(msg)
 warnings.warn(msg)
 return False

 finally:
 # Only clear up things which have been created
 if "connection" in locals():
 connection.close()
 if "temp_fits_file" in locals():
 temp_fits_file.close()

 return True

[docs]def create_dataset(dataset_id, description):
 """ Creates a dataset if it doesn't exists
 Note: Should only be used in a master recipe
 Returns:
 the database ID of this dataset
 """
 database = Database()
 if dataset_id == -1:
 dataset = DataSet({'description': description}, database)
 logger.info("created dataset %s (%s)" % (dataset.id,
 dataset.description))
 else:
 dataset = DataSet(id=dataset_id, database=database)
 logger.info("using dataset %s (%s)" % (dataset.id,
 dataset.description))
 return dataset.id

[docs]def extract_metadatas(images, rms_est_sigma, rms_est_fraction):
 """
 Extracts metadata and rms_qc values from the list of images.

 Args:
 images: list of image urls
 rms_est_sigma: used for RMS calculation, see `tkp.quality.statistics`
 rms_est_fraction: used for RMS calculation, see `tkp.quality.statistics`

 Returns:
 a list of metadata's. The metadata will be False if extraction failed.
 """
 results = []
 for image in images:
 logger.info("Extracting metadata from %s" % image)
 try:
 accessor = tkp.accessors.open(image)
 except TypeError as e:
 logging.error("Can't open image %s: %s" % (image, e))
 results.append(False)
 else:
 metadata = accessor.extract_metadata()
 metadata['rms_qc'] = rms_with_clipped_subregion(accessor.data,
 rms_est_sigma,rms_est_fraction)
 results.append(metadata)
 return results

[docs]def store_images(images_metadata, extraction_radius_pix, dataset_id):
 """ Add images to database.
 Note that all images in one dataset should be inserted in one go, since the
 order is very important here. If you don't add them all in once, you should
 make sure they are added in the correct order e.g. sorted by observation
 time.

 Note: Should only be used in a master recipe

 Args:
 images_metadata: list of dicts containing image metadata
 extraction_radius_pix: (float) Used to calculate the 'skyregion'
 dataset_id: dataset id to be used. don't use value from parset file
 since this can be -1 (TraP way of setting auto increment)
 Returns:
 the database ID of this dataset
 """
 database = Database()
 dataset = DataSet(id=dataset_id, database=database)
 image_ids = []

 # sort images by timestamp
 images_metadata.sort(key=lambda m: m['taustart_ts'])

 for metadata in images_metadata:
 metadata['xtr_radius'] = extraction_radius_pix * abs(metadata['deltax'])
 filename = metadata['url']
 db_image = Image(data=metadata, dataset=dataset)
 image_ids.append(db_image.id)
 logger.info("stored %s with ID %s" % (os.path.basename(filename), db_image.id))
 return image_ids

[docs]def node_steps(images, image_cache_config, rms_est_sigma, rms_est_fraction):
 """
 this function executes all persistence steps that should be executed on a node.
 Note: Should only be used in a node recipe
 """
 mongohost = image_cache_config['mongo_host']
 mongoport = image_cache_config['mongo_port']
 mongodb = image_cache_config['mongo_db']
 copy_images = image_cache_config['copy_images']

 if copy_images:
 for image in images:
 image_to_mongodb(image, mongohost, mongoport, mongodb)
 else:
 logger.info("Not copying images to mongodb")

 metadatas = extract_metadatas(images, rms_est_sigma, rms_est_fraction)
 return metadatas

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/steps/forced_fitting.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.steps.forced_fitting

import logging
import tkp.accessors
from tkp.accessors import sourcefinder_image_from_accessor
import tkp.accessors
from tkp.db import general as dbgen
from tkp.db import monitoringlist as dbmon
from tkp.db import nulldetections as dbnd

logger = logging.getLogger(__name__)

def get_forced_fit_requests(image):
 nd_requested_fits = dbnd.get_nulldetections(image.id)
 logger.info("Found %s null detections" % len(nd_requested_fits))
 mon_entries = dbmon.get_monitor_entries(image.dataset.id)

 all_fit_positions = []
 all_fit_ids = []

 all_fit_positions.extend([(nd[1],nd[2]) for nd in nd_requested_fits])
 all_fit_ids.extend([('ff_nd', nd[0]) for nd in nd_requested_fits])

 all_fit_positions.extend([(ms[1],ms[2]) for ms in mon_entries])
 all_fit_ids.extend([('ff_ms',ms[0]) for ms in mon_entries])

 return all_fit_positions, all_fit_ids

def insert_and_associate_forced_fits(image_id,successful_fits,successful_ids):
 assert len(successful_ids) == len(successful_fits)

 nd_extractions=[]
 nd_runcats=[]

 ms_extractions=[]
 ms_ids = []

 for idx, id in enumerate(successful_ids):
 if id[0] == 'ff_nd':
 nd_extractions.append(successful_fits[idx])
 nd_runcats.append(id[1])
 elif id[0] == 'ff_ms':
 ms_extractions.append(successful_fits[idx])
 ms_ids.append(id[1])
 else:
 raise ValueError("Forced fit type id not recognised:" + id[0])

 if nd_extractions:
 logger.info("adding null detections")
 dbgen.insert_extracted_sources(image_id, nd_extractions,
 extract_type='ff_nd',
 ff_runcat_ids=nd_runcats)
 dbnd.associate_nd(image_id)
 else:
 logger.info("No successful nulldetection fits")

 if ms_extractions:
 dbgen.insert_extracted_sources(image_id, ms_extractions,
 extract_type='ff_ms',
 ff_monitor_ids=ms_ids)
 logger.info("adding monitoring sources")
 dbmon.associate_ms(image_id)
 else:
 logger.info("No successful monitor fits")

[docs]def perform_forced_fits(fit_posns, fit_ids,
 image_path, extraction_params):
 """
 Perform forced source measurements on an image based on a list of
 positions.

 Args:
 fit_posns (list): List of (RA, Dec) tuples: Positions to be fit.
 fit_ids: List of identifiers for each requested fit position.
 image_path (str): path to image for measurements.
 extraction_params (dict): source extraction parameters, as a dictionary.

 Returns:
 tuple: A matched pair of lists (serialized_fits, ids), corresponding to
 successfully fitted positions.
 NB returned lists may be shorter than input lists
 if some fits are unsuccessful.
 """
 logger.info("Forced fitting in image: %s" % (image_path))
 fitsimage = tkp.accessors.open(image_path)

 data_image = sourcefinder_image_from_accessor(fitsimage,
 margin=extraction_params['margin'],
 radius=extraction_params['extraction_radius_pix'],
 back_size_x=extraction_params['back_size_x'],
 back_size_y=extraction_params['back_size_y'])

 boxsize = extraction_params['box_in_beampix'] * max(data_image.beam[0],
 data_image.beam[1])
 successful_fits, successful_ids = data_image.fit_fixed_positions(
 fit_posns, boxsize, ids=fit_ids)
 if successful_fits:
 serialized =[
 f.serialize(
 extraction_params['ew_sys_err'], extraction_params['ns_sys_err'])
 for f in successful_fits]
 return serialized, successful_ids
 else:
 return [],[]

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

_modules/tkp/telescope/lofar/beam.html

 Navigation

 		
 index

 		
 modules |

 		LOFAR Transients Pipeline 2.1.0 documentation »

 		Module code »

 Source code for tkp.telescope.lofar.beam

"""
Beam characterization calculations.

For more information and the math behind this code go to the `LOFAR imaging
capabilities page
<http://www.astron.nl/radio-observatory/astronomers/lofar-imaging-capabilities-sensitivity/lofar-imaging-capabilities/lofa>`_.
"""

import math

[docs]def fwhm(lambda_, d, alpha1=1.3):
 """
 The nominal Full Width Half Maximum (FWHM) of a LOFAR Station beam.

 :param lambda_: wavelength in meters
 :param d: station diameter.
 :param alpha1: depends on the tapering intrinsic to the layout of the station,
 and any additional tapering which may be used to form the
 station beam. No electronic tapering is presently applied to
 LOFAR station beamforming. For a uniformly illuminated circular
 aperture, alpha1 takes the value of 1.02, and the value increases
 with tapering (Napier 1999).
 :returns: the nominal Full Width Half Maximum (FWHM)
 """
 return alpha1 * lambda_ / d

[docs]def fov(fwhm):
 """
 The Field of View (FoV) of a LOFAR station

 :param fwhm: nominal Full Width Half Maximum, caulculated with :func:`fwhm`.

 """
 return math.pi * ((fwhm / 2) ** 2)

 © Copyright 2006—2015, LOFAR Transients Key Science Project.

